Experiment and Analysis of Active Vibration Suppression via an Absorber with a Tunable Delay

A time-delayed absorber is utilized to suppress the vibration of a primary system excited by a simple harmonic force. The inherent and intentional time delays in the feedback control loop are taken into consideration. The value of the former is fixed, while the value of the latter is tunable in the...

Full description

Saved in:
Bibliographic Details
Main Author: Yixia Sun
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/7608013
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A time-delayed absorber is utilized to suppress the vibration of a primary system excited by a simple harmonic force. The inherent and intentional time delays in the feedback control loop are taken into consideration. The value of the former is fixed, while the value of the latter is tunable in the controller. To begin with, the mechanical model of the system is established and the acceleration transfer functions of the system are derived. Consequently, the stability analysis of the coupled system is carried out. Finally, the experimental studies on the performance of the time-delayed absorber are conducted. Both experimental and theoretical results show that the time-delayed absorber with proper values of feedback gain coefficient and intentional time delay greatly suppresses the vibration of the primary system. The numerical results validate the correctness of the experimental and theoretical ones.
ISSN:1070-9622
1875-9203