Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation
This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system ha...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2016/8075381 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832545381759582208 |
---|---|
author | Yuzhen Mi |
author_facet | Yuzhen Mi |
author_sort | Yuzhen Mi |
collection | DOAJ |
description | This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution. |
format | Article |
id | doaj-art-8c7cb77fc71241ee95b3f62bd3787cbc |
institution | Kabale University |
issn | 2314-8896 2314-8888 |
language | English |
publishDate | 2016-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces |
spelling | doaj-art-8c7cb77fc71241ee95b3f62bd3787cbc2025-02-03T07:25:57ZengWileyJournal of Function Spaces2314-88962314-88882016-01-01201610.1155/2016/80753818075381Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small PerturbationYuzhen Mi0Department of Mathematics, Lingnan Normal University, Zhanjiang, Guangdong 524048, ChinaThis paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.http://dx.doi.org/10.1155/2016/8075381 |
spellingShingle | Yuzhen Mi Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation Journal of Function Spaces |
title | Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation |
title_full | Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation |
title_fullStr | Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation |
title_full_unstemmed | Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation |
title_short | Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation |
title_sort | existence of generalized homoclinic solutions of lotka volterra system under a small perturbation |
url | http://dx.doi.org/10.1155/2016/8075381 |
work_keys_str_mv | AT yuzhenmi existenceofgeneralizedhomoclinicsolutionsoflotkavolterrasystemunderasmallperturbation |