Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation

This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system ha...

Full description

Saved in:
Bibliographic Details
Main Author: Yuzhen Mi
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2016/8075381
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545381759582208
author Yuzhen Mi
author_facet Yuzhen Mi
author_sort Yuzhen Mi
collection DOAJ
description This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.
format Article
id doaj-art-8c7cb77fc71241ee95b3f62bd3787cbc
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-8c7cb77fc71241ee95b3f62bd3787cbc2025-02-03T07:25:57ZengWileyJournal of Function Spaces2314-88962314-88882016-01-01201610.1155/2016/80753818075381Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small PerturbationYuzhen Mi0Department of Mathematics, Lingnan Normal University, Zhanjiang, Guangdong 524048, ChinaThis paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.http://dx.doi.org/10.1155/2016/8075381
spellingShingle Yuzhen Mi
Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation
Journal of Function Spaces
title Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation
title_full Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation
title_fullStr Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation
title_full_unstemmed Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation
title_short Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation
title_sort existence of generalized homoclinic solutions of lotka volterra system under a small perturbation
url http://dx.doi.org/10.1155/2016/8075381
work_keys_str_mv AT yuzhenmi existenceofgeneralizedhomoclinicsolutionsoflotkavolterrasystemunderasmallperturbation