An AI-Based Digital Scanner for <i>Varroa destructor</i> Detection in Beekeeping

Beekeeping is a crucial agricultural practice that significantly enhances environmental health and food production through effective pollination by honey bees. However, honey bees face numerous threats, including exotic parasites, large-scale transportation, and common agricultural practices that ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniela Scutaru, Simone Bergonzoli, Corrado Costa, Simona Violino, Cecilia Costa, Sergio Albertazzi, Vittorio Capano, Marko M. Kostić, Antonio Scarfone
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Insects
Subjects:
Online Access:https://www.mdpi.com/2075-4450/16/1/75
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Beekeeping is a crucial agricultural practice that significantly enhances environmental health and food production through effective pollination by honey bees. However, honey bees face numerous threats, including exotic parasites, large-scale transportation, and common agricultural practices that may increase the risk of parasite and pathogen transmission. A major threat is the <i>Varroa destructor</i> mite, which feeds on honey bee fat bodies and transmits viruses, leading to significant colony losses. Detecting the parasite and defining the intervention thresholds for effective treatment is a difficult and time-consuming task; different detection methods exist, but they are mainly based on human eye observations, resulting in low accuracy. This study introduces a digital portable scanner coupled with an AI algorithm (BeeVS) used to detect Varroa mites. The device works through image analysis of a sticky sheet previously placed under the beehive for some days, intercepting the Varroa mites that naturally fall. In this study, the scanner was tested for 17 weeks, receiving sheets from 5 beehives every week, and checking the accuracy, reliability, and speed of the method compared to conventional human visual inspection. The results highlighted the high repeatability of the measurements (R<sup>2</sup> ≥ 0.998) and the high accuracy of the BeeVS device; when at least 10 mites per sheet were present, the device showed a cumulative percentage error below 1%, compared to approximately 20% for human visual observation. Given its repeatability and reliability, the device can be considered a valid tool for beekeepers and scientists, offering the opportunity to monitor many beehives in a short time, unlike visual counting, which is done on a sample basis.
ISSN:2075-4450