Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model

Artificial releases of Wolbachia-infected Aedes mosquitoes have been under study in the past yearsfor fighting vector-borne diseases such as dengue, chikungunya and zika.Several strains of this bacterium cause cytoplasmic incompatibility (CI) and can also affect their host's fecundity or lifesp...

Full description

Saved in:
Bibliographic Details
Main Authors: Martin Strugarek, Nicolas Vauchelet, Jorge P. Zubelli
Format: Article
Language:English
Published: AIMS Press 2018-07-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2018043
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial releases of Wolbachia-infected Aedes mosquitoes have been under study in the past yearsfor fighting vector-borne diseases such as dengue, chikungunya and zika.Several strains of this bacterium cause cytoplasmic incompatibility (CI) and can also affect their host's fecundity or lifespan, while highly reducing vector competence for the main arboviruses. We consider and answer the following questions: 1) what should be the initial condition (i.e. size of the initial mosquito population) to have invasion with one mosquito release source? We note that it is hard to have an invasion in such case. 2) How many release points does one need to have sufficiently high probability of invasion? 3) What happens if one accounts for uncertainty in the release protocol (e.g. unequal spacing among release points)?We build a framework based on existing reaction-diffusion models for the uncertainty quantification in this context,obtain both theoretical and numerical lower bounds for the probability of release successand give new quantitative results on the one dimensional case.
ISSN:1551-0018