Chaotic Power System Stabilization Based on Novel Incommensurate Fractional-Order Linear Augmentation Controller
The nonlinear dynamics of an incommensurate fractional-order single-machine infinite-bus (SMIB) power system benchmark model are explored and studied by means of modern nonlinear analysis theories, such as bifurcation, chaos, power spectral density (PSD), and bicoherence methods. The effect of incom...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/3334609 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832561440373866496 |
---|---|
author | Abdul-Basset A. Al-Hussein Fadhil Rahma Tahir Karthikeyan Rajagopal |
author_facet | Abdul-Basset A. Al-Hussein Fadhil Rahma Tahir Karthikeyan Rajagopal |
author_sort | Abdul-Basset A. Al-Hussein |
collection | DOAJ |
description | The nonlinear dynamics of an incommensurate fractional-order single-machine infinite-bus (SMIB) power system benchmark model are explored and studied by means of modern nonlinear analysis theories, such as bifurcation, chaos, power spectral density (PSD), and bicoherence methods. The effect of incommensurate order derivatives on power system dynamics is presented. The study reveals that the power system undergoes interesting dynamics such as periodic motion, chaotic oscillations, and multistability whenever the system parameter values fall into particular ranges. A new fractional-order linear augmentation-based control scheme is applied to damp out the power system’s chaotic oscillation, change the stability of the coexisting states, and drive the system from multistability to monostability. The stability of the proposed control system is derived using Lyapunov theory. Simulation results confirmed the effectiveness and robustness of the proposed control scheme in damping power system oscillations and achieving good overall performance. The results in this paper will give a better understanding of the nonlinear dynamic behaviors of the incommensurate fractional-order SMIB power system. |
format | Article |
id | doaj-art-8be8d1b72b0d45feb563592c8e26eedb |
institution | Kabale University |
issn | 1076-2787 1099-0526 |
language | English |
publishDate | 2021-01-01 |
publisher | Wiley |
record_format | Article |
series | Complexity |
spelling | doaj-art-8be8d1b72b0d45feb563592c8e26eedb2025-02-03T01:25:02ZengWileyComplexity1076-27871099-05262021-01-01202110.1155/2021/33346093334609Chaotic Power System Stabilization Based on Novel Incommensurate Fractional-Order Linear Augmentation ControllerAbdul-Basset A. Al-Hussein0Fadhil Rahma Tahir1Karthikeyan Rajagopal2Department of Electrical Engineering, University of Basrah, Basrah, IraqDepartment of Electrical Engineering, University of Basrah, Basrah, IraqCenter for Nonlinear Systems, Chennai Institute of Technology, Chennai, IndiaThe nonlinear dynamics of an incommensurate fractional-order single-machine infinite-bus (SMIB) power system benchmark model are explored and studied by means of modern nonlinear analysis theories, such as bifurcation, chaos, power spectral density (PSD), and bicoherence methods. The effect of incommensurate order derivatives on power system dynamics is presented. The study reveals that the power system undergoes interesting dynamics such as periodic motion, chaotic oscillations, and multistability whenever the system parameter values fall into particular ranges. A new fractional-order linear augmentation-based control scheme is applied to damp out the power system’s chaotic oscillation, change the stability of the coexisting states, and drive the system from multistability to monostability. The stability of the proposed control system is derived using Lyapunov theory. Simulation results confirmed the effectiveness and robustness of the proposed control scheme in damping power system oscillations and achieving good overall performance. The results in this paper will give a better understanding of the nonlinear dynamic behaviors of the incommensurate fractional-order SMIB power system.http://dx.doi.org/10.1155/2021/3334609 |
spellingShingle | Abdul-Basset A. Al-Hussein Fadhil Rahma Tahir Karthikeyan Rajagopal Chaotic Power System Stabilization Based on Novel Incommensurate Fractional-Order Linear Augmentation Controller Complexity |
title | Chaotic Power System Stabilization Based on Novel Incommensurate Fractional-Order Linear Augmentation Controller |
title_full | Chaotic Power System Stabilization Based on Novel Incommensurate Fractional-Order Linear Augmentation Controller |
title_fullStr | Chaotic Power System Stabilization Based on Novel Incommensurate Fractional-Order Linear Augmentation Controller |
title_full_unstemmed | Chaotic Power System Stabilization Based on Novel Incommensurate Fractional-Order Linear Augmentation Controller |
title_short | Chaotic Power System Stabilization Based on Novel Incommensurate Fractional-Order Linear Augmentation Controller |
title_sort | chaotic power system stabilization based on novel incommensurate fractional order linear augmentation controller |
url | http://dx.doi.org/10.1155/2021/3334609 |
work_keys_str_mv | AT abdulbassetaalhussein chaoticpowersystemstabilizationbasedonnovelincommensuratefractionalorderlinearaugmentationcontroller AT fadhilrahmatahir chaoticpowersystemstabilizationbasedonnovelincommensuratefractionalorderlinearaugmentationcontroller AT karthikeyanrajagopal chaoticpowersystemstabilizationbasedonnovelincommensuratefractionalorderlinearaugmentationcontroller |