Complete Characterization of Resistance Distance for Linear Octagonal Networks
Computing the resistance distance of a network is a fundamental and classical topic. In the aspects of considering the resistances between any two points of the lattice networks, there are many studies associated with the ladder networks and ladderlike networks. But the resistances between any two p...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/5917098 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Computing the resistance distance of a network is a fundamental and classical topic. In the aspects of considering the resistances between any two points of the lattice networks, there are many studies associated with the ladder networks and ladderlike networks. But the resistances between any two points for more complex structures than ladder networks or ladderlike networks are still unknown. In this paper, a rather complicated structure which is named linear octagonal network is considered. Treelike octagonal systems are cata-condensed systems of octagons, which represent a class of polycyclic conjugated hydrocarbons. A linear octagonal network is a cata-condensed octagonal system with no branchings. Moreover, the resistances between any two points of a linear octagonal network are first determined. One finds that the effective resistances between new inserted points and others points of a linear octagonal network can be given by the effective resistances between two initial points which are inherited from the linear polyomino network. |
---|---|
ISSN: | 1076-2787 1099-0526 |