The Partial Second Boundary Value Problem of an Anisotropic Parabolic Equation

Consider an anisotropic parabolic equation with the variable exponents vt=∑i=1n(bi(x,t)vxipi(x)-2vxi)xi+f(v,x,t), where bi(x,t)∈C1(QT¯), pi(x)∈C1(Ω¯), pi(x)>1, bi(x,t)≥0, f(v,x,t)≥0. If {bi(x,t)} is degenerate on Γ2⊂∂Ω, then the second boundary value condition is imposed on the remaining part ∂Ω∖...

Full description

Saved in:
Bibliographic Details
Main Author: Huashui Zhan
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2019/6930385
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548831440404480
author Huashui Zhan
author_facet Huashui Zhan
author_sort Huashui Zhan
collection DOAJ
description Consider an anisotropic parabolic equation with the variable exponents vt=∑i=1n(bi(x,t)vxipi(x)-2vxi)xi+f(v,x,t), where bi(x,t)∈C1(QT¯), pi(x)∈C1(Ω¯), pi(x)>1, bi(x,t)≥0, f(v,x,t)≥0. If {bi(x,t)} is degenerate on Γ2⊂∂Ω, then the second boundary value condition is imposed on the remaining part ∂Ω∖Γ2. The uniqueness of weak solution can be proved without the boundary value condition on Γ2.
format Article
id doaj-art-8b8dae566ff2434a9d57a2e4f86273cb
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2019-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-8b8dae566ff2434a9d57a2e4f86273cb2025-02-03T06:13:02ZengWileyJournal of Function Spaces2314-88962314-88882019-01-01201910.1155/2019/69303856930385The Partial Second Boundary Value Problem of an Anisotropic Parabolic EquationHuashui Zhan0School of Applied Mathematics, Xiamen University of Technology, Xiamen, Fujian 361024, ChinaConsider an anisotropic parabolic equation with the variable exponents vt=∑i=1n(bi(x,t)vxipi(x)-2vxi)xi+f(v,x,t), where bi(x,t)∈C1(QT¯), pi(x)∈C1(Ω¯), pi(x)>1, bi(x,t)≥0, f(v,x,t)≥0. If {bi(x,t)} is degenerate on Γ2⊂∂Ω, then the second boundary value condition is imposed on the remaining part ∂Ω∖Γ2. The uniqueness of weak solution can be proved without the boundary value condition on Γ2.http://dx.doi.org/10.1155/2019/6930385
spellingShingle Huashui Zhan
The Partial Second Boundary Value Problem of an Anisotropic Parabolic Equation
Journal of Function Spaces
title The Partial Second Boundary Value Problem of an Anisotropic Parabolic Equation
title_full The Partial Second Boundary Value Problem of an Anisotropic Parabolic Equation
title_fullStr The Partial Second Boundary Value Problem of an Anisotropic Parabolic Equation
title_full_unstemmed The Partial Second Boundary Value Problem of an Anisotropic Parabolic Equation
title_short The Partial Second Boundary Value Problem of an Anisotropic Parabolic Equation
title_sort partial second boundary value problem of an anisotropic parabolic equation
url http://dx.doi.org/10.1155/2019/6930385
work_keys_str_mv AT huashuizhan thepartialsecondboundaryvalueproblemofananisotropicparabolicequation
AT huashuizhan partialsecondboundaryvalueproblemofananisotropicparabolicequation