Computing Coherence Vectors and Correlation Matrices with Application to Quantum Discord Quantification

Coherence vectors and correlation matrices are important functions frequently used in physics. The numerical calculation of these functions directly from their definitions, which involves Kronecker products and matrix multiplications, may seem to be a reasonable option. Notwithstanding, as we demons...

Full description

Saved in:
Bibliographic Details
Main Author: Jonas Maziero
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2016/6892178
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coherence vectors and correlation matrices are important functions frequently used in physics. The numerical calculation of these functions directly from their definitions, which involves Kronecker products and matrix multiplications, may seem to be a reasonable option. Notwithstanding, as we demonstrate in this paper, some algebraic manipulations before programming can reduce considerably their computational complexity. Besides, we provide Fortran code to generate generalized Gell-Mann matrices and to compute the optimized and unoptimized versions of associated Bloch’s vectors and correlation matrix in the case of bipartite quantum systems. As a code test and application example, we consider the calculation of Hilbert-Schmidt quantum discords.
ISSN:1687-9120
1687-9139