Numerical Solution of Poisson's Equation Using a Combination of Logarithmic and Multiquadric Radial Basis Function Networks
This paper presents numerical solution of elliptic partial differential equations (Poisson's equation) using a combination of logarithmic and multiquadric radial basis function networks. This method uses a special combination between logarithmic and multiquadric radial basis functions with a pa...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2012/286391 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents numerical solution of elliptic partial differential equations (Poisson's equation) using a combination of logarithmic and multiquadric radial basis function networks. This method uses a special combination between logarithmic and multiquadric radial basis functions with a parameter r. Further, the condition number which arises in the process is discussed, and a comparison is made between them with our earlier studies and previously known ones. It is shown that the system is stable. |
---|---|
ISSN: | 1110-757X 1687-0042 |