Image smoothing method based on global gradient sparsity and local relative gradient constraint optimization

Abstract Removing texture while preserving the main structure of an image is a challenging task. To address this, this paper propose an image smoothing method based on global gradient sparsity and local relative gradient constraints optimization. To reduce the interference of complex texture details...

Full description

Saved in:
Bibliographic Details
Main Authors: Siyuan Li, Yuan Liu, Jiafu Zeng, Yepeng Liu, Yue Li, Qingsong Xie
Format: Article
Language:English
Published: Nature Portfolio 2024-07-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-65886-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Removing texture while preserving the main structure of an image is a challenging task. To address this, this paper propose an image smoothing method based on global gradient sparsity and local relative gradient constraints optimization. To reduce the interference of complex texture details, adopting a multi-directional difference constrained global gradient sparsity decomposition method, which provides a guidance image with weaker texture detail gradients. Meanwhile, using the luminance channel as a reference, edge-aware operator is constructed based on local gradient constraints. This operator weakens the gradients of repetitive and similar texture details, enabling it to obtain more accurate structural information for guiding global optimization of the image. By projecting multi-directional differences onto the horizontal and vertical directions, a mapping from multi-directional differences to bi-directional gradients is achieved. Additionally, to ensure the consistency of measurement results, a multi-directional gradient normalization method is designed. Through experiments, we demonstrate that our method exhibits significant advantages in preserving image edges compared to current advanced smoothing methods.
ISSN:2045-2322