Some Carleman-type inequalities in ( p , q ) $(p,q)$ -calculus

Abstract In this paper, we construct ( p , q ) $\left (p,q\right )$ -type Jessen’s inequality using the properties of convex functions. On this basis, we generalize the classical Carleman integral-type inequality in ( p , q ) $\left (p,q\right )$ -calculus and obtain various forms of ( p , q ) $\lef...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiao Yu, Lin Han
Format: Article
Language:English
Published: SpringerOpen 2025-03-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-025-03281-y
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849773839919087616
author Jiao Yu
Lin Han
author_facet Jiao Yu
Lin Han
author_sort Jiao Yu
collection DOAJ
description Abstract In this paper, we construct ( p , q ) $\left (p,q\right )$ -type Jessen’s inequality using the properties of convex functions. On this basis, we generalize the classical Carleman integral-type inequality in ( p , q ) $\left (p,q\right )$ -calculus and obtain various forms of ( p , q ) $\left (p,q\right )$ -integral-type Carleman’s inequality by introducing various types of weight functions. Furthermore, we verify that under specific conditions, the ( p , q ) $\left (p,q\right )$ -integral Carleman inequality can reduce to the classical Carleman inequality in calculus.
format Article
id doaj-art-8b12acf8e3fd40b79a43cb1745d2afb0
institution DOAJ
issn 1029-242X
language English
publishDate 2025-03-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj-art-8b12acf8e3fd40b79a43cb1745d2afb02025-08-20T03:01:55ZengSpringerOpenJournal of Inequalities and Applications1029-242X2025-03-012025111410.1186/s13660-025-03281-ySome Carleman-type inequalities in ( p , q ) $(p,q)$ -calculusJiao Yu0Lin Han1Institute of Public Foundation, Ningbo PolytechnicInstitute of Public Foundation, Ningbo PolytechnicAbstract In this paper, we construct ( p , q ) $\left (p,q\right )$ -type Jessen’s inequality using the properties of convex functions. On this basis, we generalize the classical Carleman integral-type inequality in ( p , q ) $\left (p,q\right )$ -calculus and obtain various forms of ( p , q ) $\left (p,q\right )$ -integral-type Carleman’s inequality by introducing various types of weight functions. Furthermore, we verify that under specific conditions, the ( p , q ) $\left (p,q\right )$ -integral Carleman inequality can reduce to the classical Carleman inequality in calculus.https://doi.org/10.1186/s13660-025-03281-y( p , q ) $(p,q)$ -Differential( p , q ) $(p,q)$ -Integration( p , q ) $(p,q)$ -Carleman inequality( p , q ) $(p,q)$ -Jessen inequality
spellingShingle Jiao Yu
Lin Han
Some Carleman-type inequalities in ( p , q ) $(p,q)$ -calculus
Journal of Inequalities and Applications
( p , q ) $(p,q)$ -Differential
( p , q ) $(p,q)$ -Integration
( p , q ) $(p,q)$ -Carleman inequality
( p , q ) $(p,q)$ -Jessen inequality
title Some Carleman-type inequalities in ( p , q ) $(p,q)$ -calculus
title_full Some Carleman-type inequalities in ( p , q ) $(p,q)$ -calculus
title_fullStr Some Carleman-type inequalities in ( p , q ) $(p,q)$ -calculus
title_full_unstemmed Some Carleman-type inequalities in ( p , q ) $(p,q)$ -calculus
title_short Some Carleman-type inequalities in ( p , q ) $(p,q)$ -calculus
title_sort some carleman type inequalities in p q p q calculus
topic ( p , q ) $(p,q)$ -Differential
( p , q ) $(p,q)$ -Integration
( p , q ) $(p,q)$ -Carleman inequality
( p , q ) $(p,q)$ -Jessen inequality
url https://doi.org/10.1186/s13660-025-03281-y
work_keys_str_mv AT jiaoyu somecarlemantypeinequalitiesinpqpqcalculus
AT linhan somecarlemantypeinequalitiesinpqpqcalculus