In Vivo and In Vitro Study of a Polylactide-Fiber-Reinforced β-Tricalcium Phosphate Composite Cage in an Ovine Anterior Cervical Intercorporal Fusion Model

A poly-70L/30DL-lactide (PLA70)–β-tricalcium phosphate (β-TCP) composite implant reinforced by continuous PLA-96L/4D-lactide (PLA96) fibers was designed for in vivo spinal fusion. The pilot study was performed with four sheep, using titanium cage implants as controls. The composite implants failed t...

Full description

Saved in:
Bibliographic Details
Main Authors: Janek Frantzén, Aliisa Pälli, Esa Kotilainen, Harri Heino, Bettina Mannerström, Heini Huhtala, Hannu Kuokkanen, George K. Sándor, Kari Leino, Matias Röyttä, Riitta Parkkola, Riitta Suuronen, Susanna Miettinen, Hannu T. Aro, Suvi Haimi
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Biomaterials
Online Access:http://dx.doi.org/10.1155/2011/109638
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546544308453376
author Janek Frantzén
Aliisa Pälli
Esa Kotilainen
Harri Heino
Bettina Mannerström
Heini Huhtala
Hannu Kuokkanen
George K. Sándor
Kari Leino
Matias Röyttä
Riitta Parkkola
Riitta Suuronen
Susanna Miettinen
Hannu T. Aro
Suvi Haimi
author_facet Janek Frantzén
Aliisa Pälli
Esa Kotilainen
Harri Heino
Bettina Mannerström
Heini Huhtala
Hannu Kuokkanen
George K. Sándor
Kari Leino
Matias Röyttä
Riitta Parkkola
Riitta Suuronen
Susanna Miettinen
Hannu T. Aro
Suvi Haimi
author_sort Janek Frantzén
collection DOAJ
description A poly-70L/30DL-lactide (PLA70)–β-tricalcium phosphate (β-TCP) composite implant reinforced by continuous PLA-96L/4D-lactide (PLA96) fibers was designed for in vivo spinal fusion. The pilot study was performed with four sheep, using titanium cage implants as controls. The composite implants failed to direct bone growth as desired, whereas the bone contact and the proper integration were evident with controls 6 months after implantation. Therefore, the PLA70/β-TCP composite matrix material was further analyzed in the in vitro experiment by human and ovine adipose stem cells (hASCs and oASCs). The composites proved to be biocompatible as confirmed by live/dead assay. The proliferation rate of oASCs was higher than that of hASCs at all times during the 28 d culture period. Furthermore, the composites had only a minor osteogenic effect on oASCs, whereas the hASC osteogenesis on PLA70/β-TCP composites was evident. In conclusion, the composite implant material can be applied with hASCs for tissue engineering but not be evaluated in vivo with sheep.
format Article
id doaj-art-8aefe406b11c465e8e72493a5f0037d6
institution Kabale University
issn 1687-8787
1687-8795
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series International Journal of Biomaterials
spelling doaj-art-8aefe406b11c465e8e72493a5f0037d62025-02-03T06:48:28ZengWileyInternational Journal of Biomaterials1687-87871687-87952011-01-01201110.1155/2011/109638109638In Vivo and In Vitro Study of a Polylactide-Fiber-Reinforced β-Tricalcium Phosphate Composite Cage in an Ovine Anterior Cervical Intercorporal Fusion ModelJanek Frantzén0Aliisa Pälli1Esa Kotilainen2Harri Heino3Bettina Mannerström4Heini Huhtala5Hannu Kuokkanen6George K. Sándor7Kari Leino8Matias Röyttä9Riitta Parkkola10Riitta Suuronen11Susanna Miettinen12Hannu T. Aro13Suvi Haimi14Neurosurgical Unit, Department of Surgery, Turku University Central Hospital, P.O. Box 52, 20521 Turku, FinlandInstitute of Biomedical Technology, University of Tampere, 33014 Tampere, FinlandNeurosurgical Unit, Department of Surgery, Turku University Central Hospital, P.O. Box 52, 20521 Turku, FinlandBioretec Ltd., Hermiankatu 22, 33720 Tampere, FinlandInstitute of Biomedical Technology, University of Tampere, 33014 Tampere, FinlandTampere School of Public Health, University of Tampere, 33014 Tampere, FinlandDepartment of Plastic Surgery, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, FinlandInstitute of Biomedical Technology, University of Tampere, 33014 Tampere, FinlandDepartment of Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku University Central Hospital, P.O. Box 52, 20521 Turku, FinlandDepartment of Pathology, Turku University Central Hospital, P.O. Box 52, 20521 Turku, FinlandDepartment of Radiology, Turku University Central Hospital, P.O. Box 52, 20521 Turku, FinlandInstitute of Biomedical Technology, University of Tampere, 33014 Tampere, FinlandInstitute of Biomedical Technology, University of Tampere, 33014 Tampere, FinlandOrthopedic Research Unit, Department of Orthopedic Surgery and Traumatology, University of Turku, Lemminkäisenkatu 2, 20520 Turku, FinlandInstitute of Biomedical Technology, University of Tampere, 33014 Tampere, FinlandA poly-70L/30DL-lactide (PLA70)–β-tricalcium phosphate (β-TCP) composite implant reinforced by continuous PLA-96L/4D-lactide (PLA96) fibers was designed for in vivo spinal fusion. The pilot study was performed with four sheep, using titanium cage implants as controls. The composite implants failed to direct bone growth as desired, whereas the bone contact and the proper integration were evident with controls 6 months after implantation. Therefore, the PLA70/β-TCP composite matrix material was further analyzed in the in vitro experiment by human and ovine adipose stem cells (hASCs and oASCs). The composites proved to be biocompatible as confirmed by live/dead assay. The proliferation rate of oASCs was higher than that of hASCs at all times during the 28 d culture period. Furthermore, the composites had only a minor osteogenic effect on oASCs, whereas the hASC osteogenesis on PLA70/β-TCP composites was evident. In conclusion, the composite implant material can be applied with hASCs for tissue engineering but not be evaluated in vivo with sheep.http://dx.doi.org/10.1155/2011/109638
spellingShingle Janek Frantzén
Aliisa Pälli
Esa Kotilainen
Harri Heino
Bettina Mannerström
Heini Huhtala
Hannu Kuokkanen
George K. Sándor
Kari Leino
Matias Röyttä
Riitta Parkkola
Riitta Suuronen
Susanna Miettinen
Hannu T. Aro
Suvi Haimi
In Vivo and In Vitro Study of a Polylactide-Fiber-Reinforced β-Tricalcium Phosphate Composite Cage in an Ovine Anterior Cervical Intercorporal Fusion Model
International Journal of Biomaterials
title In Vivo and In Vitro Study of a Polylactide-Fiber-Reinforced β-Tricalcium Phosphate Composite Cage in an Ovine Anterior Cervical Intercorporal Fusion Model
title_full In Vivo and In Vitro Study of a Polylactide-Fiber-Reinforced β-Tricalcium Phosphate Composite Cage in an Ovine Anterior Cervical Intercorporal Fusion Model
title_fullStr In Vivo and In Vitro Study of a Polylactide-Fiber-Reinforced β-Tricalcium Phosphate Composite Cage in an Ovine Anterior Cervical Intercorporal Fusion Model
title_full_unstemmed In Vivo and In Vitro Study of a Polylactide-Fiber-Reinforced β-Tricalcium Phosphate Composite Cage in an Ovine Anterior Cervical Intercorporal Fusion Model
title_short In Vivo and In Vitro Study of a Polylactide-Fiber-Reinforced β-Tricalcium Phosphate Composite Cage in an Ovine Anterior Cervical Intercorporal Fusion Model
title_sort in vivo and in vitro study of a polylactide fiber reinforced β tricalcium phosphate composite cage in an ovine anterior cervical intercorporal fusion model
url http://dx.doi.org/10.1155/2011/109638
work_keys_str_mv AT janekfrantzen invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT aliisapalli invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT esakotilainen invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT harriheino invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT bettinamannerstrom invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT heinihuhtala invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT hannukuokkanen invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT georgeksandor invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT karileino invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT matiasroytta invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT riittaparkkola invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT riittasuuronen invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT susannamiettinen invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT hannutaro invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel
AT suvihaimi invivoandinvitrostudyofapolylactidefiberreinforcedbtricalciumphosphatecompositecageinanovineanteriorcervicalintercorporalfusionmodel