Systematic trends in the spin-orbit splitting toward weak-binding
Spin–orbital (SO) splitting in atomic nuclei results from the coupling between a nucleon’s spin and its orbital angular momentum, fundamentally influencing nuclear structure, especially near the magic numbers. This paper reviews the impact of various effects on SO-splitting, including tensor and wea...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-02-01
|
| Series: | Frontiers in Physics |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fphy.2025.1510848/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Spin–orbital (SO) splitting in atomic nuclei results from the coupling between a nucleon’s spin and its orbital angular momentum, fundamentally influencing nuclear structure, especially near the magic numbers. This paper reviews the impact of various effects on SO-splitting, including tensor and weak-binding effects in neutron-rich and weakly bound nuclei, focusing on both theoretical interpretations and recent experimental results. The study summarizes new experimental results on SO-splitting in isotopes such as 34Si, 32Si, and 132Sn, showing a consistent smooth reduction in SO energy for weakly bound orbits, attributed to extended radial wave functions rather than a reduced SO potential strength. These findings reinforce the need for further experimental research with advanced radioactive ion beam facilities to understand the intricate behaviors of SO interactions in exotic nuclei. |
|---|---|
| ISSN: | 2296-424X |