Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning

Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in stude...

Full description

Saved in:
Bibliographic Details
Main Authors: Hsuan-Ta Lin, Po-Ming Lee, Tzu-Chien Hsiao
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2015/352895
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students’ learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction.
ISSN:2356-6140
1537-744X