Multiple Positive Solutions of Singular Nonlinear Sturm-Liouville Problems with Carathéodory Perturbed Term

By employing a well-known fixed point theorem, we establish the existence of multiple positive solutions for the following fourth-order singular differential equation Lu=p(t)f(t,u(t),u′′(t))-g(t,u(t),u′′(t)),0<t<1,α1u(0)-β1u'(0)=0,γ1u(1)+δ1u'(1)=0,α2u′′(0)-β2u′′′(0)=0,γ2u′′(1)+δ2u′′′...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuefeng Han, Xinguang Zhang, Lishan Liu, Yonghong Wu
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/160891
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551746350612480
author Yuefeng Han
Xinguang Zhang
Lishan Liu
Yonghong Wu
author_facet Yuefeng Han
Xinguang Zhang
Lishan Liu
Yonghong Wu
author_sort Yuefeng Han
collection DOAJ
description By employing a well-known fixed point theorem, we establish the existence of multiple positive solutions for the following fourth-order singular differential equation Lu=p(t)f(t,u(t),u′′(t))-g(t,u(t),u′′(t)),0<t<1,α1u(0)-β1u'(0)=0,γ1u(1)+δ1u'(1)=0,α2u′′(0)-β2u′′′(0)=0,γ2u′′(1)+δ2u′′′(1)=0, with αi,βi,γi,δi≥0 and βiγi+αiγi+αiδi>0,    i=1,2, where L denotes the linear operator Lu:=(ru′′′)'-qu′′,r∈C1([0,1],(0,+∞)), and q∈C([0,1],[0,+∞)). This equation is viewed as a perturbation of the fourth-order Sturm-Liouville problem, where the perturbed term g:(0,1)×[0,+∞)×(-∞,+∞)→(-∞,+∞) only satisfies the global Carathéodory conditions, which implies that the perturbed effect of g on f is quite large so that the nonlinearity can tend to negative infinity at some singular points.
format Article
id doaj-art-8addd6dcd71147c3bba874aa30be2396
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-8addd6dcd71147c3bba874aa30be23962025-02-03T06:00:34ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/160891160891Multiple Positive Solutions of Singular Nonlinear Sturm-Liouville Problems with Carathéodory Perturbed TermYuefeng Han0Xinguang Zhang1Lishan Liu2Yonghong Wu3College of International Economics and Trade, Jilin University of Finance and Economics, Jilin, Changchun 130117, ChinaSchool of Mathematical and Informational Sciences, Yantai University, Shandong, Yantai 264005, ChinaSchool of Mathematical Sciences, Qufu Normal University, Shandong, Qufu 273165, ChinaDepartment of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845, AustraliaBy employing a well-known fixed point theorem, we establish the existence of multiple positive solutions for the following fourth-order singular differential equation Lu=p(t)f(t,u(t),u′′(t))-g(t,u(t),u′′(t)),0<t<1,α1u(0)-β1u'(0)=0,γ1u(1)+δ1u'(1)=0,α2u′′(0)-β2u′′′(0)=0,γ2u′′(1)+δ2u′′′(1)=0, with αi,βi,γi,δi≥0 and βiγi+αiγi+αiδi>0,    i=1,2, where L denotes the linear operator Lu:=(ru′′′)'-qu′′,r∈C1([0,1],(0,+∞)), and q∈C([0,1],[0,+∞)). This equation is viewed as a perturbation of the fourth-order Sturm-Liouville problem, where the perturbed term g:(0,1)×[0,+∞)×(-∞,+∞)→(-∞,+∞) only satisfies the global Carathéodory conditions, which implies that the perturbed effect of g on f is quite large so that the nonlinearity can tend to negative infinity at some singular points.http://dx.doi.org/10.1155/2012/160891
spellingShingle Yuefeng Han
Xinguang Zhang
Lishan Liu
Yonghong Wu
Multiple Positive Solutions of Singular Nonlinear Sturm-Liouville Problems with Carathéodory Perturbed Term
Journal of Applied Mathematics
title Multiple Positive Solutions of Singular Nonlinear Sturm-Liouville Problems with Carathéodory Perturbed Term
title_full Multiple Positive Solutions of Singular Nonlinear Sturm-Liouville Problems with Carathéodory Perturbed Term
title_fullStr Multiple Positive Solutions of Singular Nonlinear Sturm-Liouville Problems with Carathéodory Perturbed Term
title_full_unstemmed Multiple Positive Solutions of Singular Nonlinear Sturm-Liouville Problems with Carathéodory Perturbed Term
title_short Multiple Positive Solutions of Singular Nonlinear Sturm-Liouville Problems with Carathéodory Perturbed Term
title_sort multiple positive solutions of singular nonlinear sturm liouville problems with caratheodory perturbed term
url http://dx.doi.org/10.1155/2012/160891
work_keys_str_mv AT yuefenghan multiplepositivesolutionsofsingularnonlinearsturmliouvilleproblemswithcaratheodoryperturbedterm
AT xinguangzhang multiplepositivesolutionsofsingularnonlinearsturmliouvilleproblemswithcaratheodoryperturbedterm
AT lishanliu multiplepositivesolutionsofsingularnonlinearsturmliouvilleproblemswithcaratheodoryperturbedterm
AT yonghongwu multiplepositivesolutionsofsingularnonlinearsturmliouvilleproblemswithcaratheodoryperturbedterm