An Iterative Approximate Method for Solving 2D Weakly Singular Fredholm Integral Equations of the Second Kind
This work aims to propose an iterative method for approximating solutions of two-dimensional weakly singular Fredholm integral Equation (2D-WSFIE) by incorporating the product integration technique, an appropriate cubature formula, and the Picard algorithm. This iterative approach is utilized to app...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/11/1854 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This work aims to propose an iterative method for approximating solutions of two-dimensional weakly singular Fredholm integral Equation (2D-WSFIE) by incorporating the product integration technique, an appropriate cubature formula, and the Picard algorithm. This iterative approach is utilized to approximate the solution of the 2D-WSFIE that arises in some contact problems in linear elasticity. Under some sufficient conditions, the existence and uniqueness of the solution are established, an error bound for the approximate solution is estimated, and the order of convergence of the proposed algorithm is discussed. The effectiveness of the proposed method is illustrated through its application to some contact problems involving weakly singular kernels. |
|---|---|
| ISSN: | 2227-7390 |