Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure.

As imaging techniques rapidly evolve to probe nanoscale genome organization at higher resolution, it is critical to consider how the reagents and procedures involved in sample preparation affect chromatin at the relevant length scales. Here, we investigate the effects of fluorescent labeling of DNA...

Full description

Saved in:
Bibliographic Details
Main Authors: Anne R Shim, Jane Frederick, Emily M Pujadas, Tiffany Kuo, I Chae Ye, Joshua A Pritchard, Cody L Dunton, Paola Carrillo Gonzalez, Nicolas Acosta, Surbhi Jain, Nicholas M Anthony, Luay M Almassalha, Igal Szleifer, Vadim Backman
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0301000
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850162923663523840
author Anne R Shim
Jane Frederick
Emily M Pujadas
Tiffany Kuo
I Chae Ye
Joshua A Pritchard
Cody L Dunton
Paola Carrillo Gonzalez
Nicolas Acosta
Surbhi Jain
Nicholas M Anthony
Luay M Almassalha
Igal Szleifer
Vadim Backman
author_facet Anne R Shim
Jane Frederick
Emily M Pujadas
Tiffany Kuo
I Chae Ye
Joshua A Pritchard
Cody L Dunton
Paola Carrillo Gonzalez
Nicolas Acosta
Surbhi Jain
Nicholas M Anthony
Luay M Almassalha
Igal Szleifer
Vadim Backman
author_sort Anne R Shim
collection DOAJ
description As imaging techniques rapidly evolve to probe nanoscale genome organization at higher resolution, it is critical to consider how the reagents and procedures involved in sample preparation affect chromatin at the relevant length scales. Here, we investigate the effects of fluorescent labeling of DNA sequences within chromatin using the gold standard technique of three-dimensional fluorescence in situ hybridization (3D FISH). The chemical reagents involved in the 3D FISH protocol, specifically formamide, cause significant alterations to the sub-200 nm (sub-Mbp) chromatin structure. Alternatively, two labeling methods that do not rely on formamide denaturation, resolution after single-strand exonuclease resection (RASER)-FISH and clustered regularly interspaced short palindromic repeats (CRISPR)-Sirius, had minimal impact on the three-dimensional organization of chromatin. We present a polymer physics-based analysis of these protocols with guidelines for their interpretation when assessing chromatin structure using currently available techniques.
format Article
id doaj-art-89f2c803491e4e51a3af9fa3dee2c896
institution OA Journals
issn 1932-6203
language English
publishDate 2024-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-89f2c803491e4e51a3af9fa3dee2c8962025-08-20T02:22:25ZengPublic Library of Science (PLoS)PLoS ONE1932-62032024-01-01195e030100010.1371/journal.pone.0301000Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure.Anne R ShimJane FrederickEmily M PujadasTiffany KuoI Chae YeJoshua A PritchardCody L DuntonPaola Carrillo GonzalezNicolas AcostaSurbhi JainNicholas M AnthonyLuay M AlmassalhaIgal SzleiferVadim BackmanAs imaging techniques rapidly evolve to probe nanoscale genome organization at higher resolution, it is critical to consider how the reagents and procedures involved in sample preparation affect chromatin at the relevant length scales. Here, we investigate the effects of fluorescent labeling of DNA sequences within chromatin using the gold standard technique of three-dimensional fluorescence in situ hybridization (3D FISH). The chemical reagents involved in the 3D FISH protocol, specifically formamide, cause significant alterations to the sub-200 nm (sub-Mbp) chromatin structure. Alternatively, two labeling methods that do not rely on formamide denaturation, resolution after single-strand exonuclease resection (RASER)-FISH and clustered regularly interspaced short palindromic repeats (CRISPR)-Sirius, had minimal impact on the three-dimensional organization of chromatin. We present a polymer physics-based analysis of these protocols with guidelines for their interpretation when assessing chromatin structure using currently available techniques.https://doi.org/10.1371/journal.pone.0301000
spellingShingle Anne R Shim
Jane Frederick
Emily M Pujadas
Tiffany Kuo
I Chae Ye
Joshua A Pritchard
Cody L Dunton
Paola Carrillo Gonzalez
Nicolas Acosta
Surbhi Jain
Nicholas M Anthony
Luay M Almassalha
Igal Szleifer
Vadim Backman
Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure.
PLoS ONE
title Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure.
title_full Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure.
title_fullStr Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure.
title_full_unstemmed Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure.
title_short Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure.
title_sort formamide denaturation of double stranded dna for fluorescence in situ hybridization fish distorts nanoscale chromatin structure
url https://doi.org/10.1371/journal.pone.0301000
work_keys_str_mv AT annershim formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT janefrederick formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT emilympujadas formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT tiffanykuo formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT ichaeye formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT joshuaapritchard formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT codyldunton formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT paolacarrillogonzalez formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT nicolasacosta formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT surbhijain formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT nicholasmanthony formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT luaymalmassalha formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT igalszleifer formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure
AT vadimbackman formamidedenaturationofdoublestrandeddnaforfluorescenceinsituhybridizationfishdistortsnanoscalechromatinstructure