Bayesian Analysis for a Fractional Population Growth Model

We implement the Bayesian statistical inversion theory to obtain the solution for an inverse problem of growth data, using a fractional population growth model. We estimate the parameters in the model and we make a comparison between this model and an exponential one, based on an approximation of Ba...

Full description

Saved in:
Bibliographic Details
Main Authors: Francisco J. Ariza-Hernandez, Jorge Sanchez-Ortiz, Martin P. Arciga-Alejandre, Luis X. Vivas-Cruz
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2017/9654506
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552867109535744
author Francisco J. Ariza-Hernandez
Jorge Sanchez-Ortiz
Martin P. Arciga-Alejandre
Luis X. Vivas-Cruz
author_facet Francisco J. Ariza-Hernandez
Jorge Sanchez-Ortiz
Martin P. Arciga-Alejandre
Luis X. Vivas-Cruz
author_sort Francisco J. Ariza-Hernandez
collection DOAJ
description We implement the Bayesian statistical inversion theory to obtain the solution for an inverse problem of growth data, using a fractional population growth model. We estimate the parameters in the model and we make a comparison between this model and an exponential one, based on an approximation of Bayes factor. A simulation study is carried out to show the performance of the estimators and the Bayes factor. Finally, we present a real data example to illustrate the effectiveness of the method proposed here and the pertinence of using a fractional model.
format Article
id doaj-art-89d2445ad1174842af59f0787bf5c7fb
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2017-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-89d2445ad1174842af59f0787bf5c7fb2025-02-03T05:57:34ZengWileyJournal of Applied Mathematics1110-757X1687-00422017-01-01201710.1155/2017/96545069654506Bayesian Analysis for a Fractional Population Growth ModelFrancisco J. Ariza-Hernandez0Jorge Sanchez-Ortiz1Martin P. Arciga-Alejandre2Luis X. Vivas-Cruz3Facultad de Matemáticas, Universidad Autónoma de Guerrero, 39087 Chilpancingo, GRO, MexicoFacultad de Matemáticas, Universidad Autónoma de Guerrero, 39087 Chilpancingo, GRO, MexicoFacultad de Matemáticas, Universidad Autónoma de Guerrero, 39087 Chilpancingo, GRO, MexicoFacultad de Matemáticas, Universidad Autónoma de Guerrero, 39087 Chilpancingo, GRO, MexicoWe implement the Bayesian statistical inversion theory to obtain the solution for an inverse problem of growth data, using a fractional population growth model. We estimate the parameters in the model and we make a comparison between this model and an exponential one, based on an approximation of Bayes factor. A simulation study is carried out to show the performance of the estimators and the Bayes factor. Finally, we present a real data example to illustrate the effectiveness of the method proposed here and the pertinence of using a fractional model.http://dx.doi.org/10.1155/2017/9654506
spellingShingle Francisco J. Ariza-Hernandez
Jorge Sanchez-Ortiz
Martin P. Arciga-Alejandre
Luis X. Vivas-Cruz
Bayesian Analysis for a Fractional Population Growth Model
Journal of Applied Mathematics
title Bayesian Analysis for a Fractional Population Growth Model
title_full Bayesian Analysis for a Fractional Population Growth Model
title_fullStr Bayesian Analysis for a Fractional Population Growth Model
title_full_unstemmed Bayesian Analysis for a Fractional Population Growth Model
title_short Bayesian Analysis for a Fractional Population Growth Model
title_sort bayesian analysis for a fractional population growth model
url http://dx.doi.org/10.1155/2017/9654506
work_keys_str_mv AT franciscojarizahernandez bayesiananalysisforafractionalpopulationgrowthmodel
AT jorgesanchezortiz bayesiananalysisforafractionalpopulationgrowthmodel
AT martinparcigaalejandre bayesiananalysisforafractionalpopulationgrowthmodel
AT luisxvivascruz bayesiananalysisforafractionalpopulationgrowthmodel