Approximations for Equilibrium Problems and Nonexpansive Semigroups
We introduce a new iterative method for finding a common element of the set of solutions of an equilibrium problem and the set of all common fixed points of a nonexpansive semigroup and prove the strong convergence theorem in Hilbert spaces. Our result extends the recent result of Zegeye and Shahzad...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/351372 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a new iterative method for finding a common element of the set of solutions of an equilibrium problem and the set of all common fixed points of a nonexpansive semigroup and prove the strong convergence theorem in Hilbert spaces. Our result extends the recent result of Zegeye and Shahzad (2013). In the last part of the paper, by the way, we point out that there is a slight flaw in the proof of the main result in Shehu's paper (2012) and perfect the proof. |
---|---|
ISSN: | 1085-3375 1687-0409 |