Fractional Hermite–Jensen–Mercer Integral Inequalities with respect to Another Function and Application
In this paper, authors prove new variants of Hermite–Jensen–Mercer type inequalities using ψ–Riemann–Liouville fractional integrals with respect to another function via convexity. We establish generalized identities involving ψ–Riemann–Liouville fractional integral pertaining first and twice differe...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/9260828 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, authors prove new variants of Hermite–Jensen–Mercer type inequalities using ψ–Riemann–Liouville fractional integrals with respect to another function via convexity. We establish generalized identities involving ψ–Riemann–Liouville fractional integral pertaining first and twice differentiable convex function λ, and these will be used to derive novel estimates for some fractional Hermite–Jensen–Mercer type inequalities. Some known results are recaptured from our results as special cases. Finally, an application from our results using the modified Bessel function of the first kind is established as well. |
---|---|
ISSN: | 1076-2787 1099-0526 |