On a Sum Involving the Sum-of-Divisors Function

Let σn be the sum of all divisors of n and let t be the integral part of t. In this paper, we shall prove that ∑n≤xσx/n=π2/6x  log  x+Oxlog  x2/3log2  x4/3 for x⟶∞, and that the error term of this asymptotic formula is Ωx.

Saved in:
Bibliographic Details
Main Authors: Feng Zhao, Jie Wu
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2021/5574465
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554024379875328
author Feng Zhao
Jie Wu
author_facet Feng Zhao
Jie Wu
author_sort Feng Zhao
collection DOAJ
description Let σn be the sum of all divisors of n and let t be the integral part of t. In this paper, we shall prove that ∑n≤xσx/n=π2/6x  log  x+Oxlog  x2/3log2  x4/3 for x⟶∞, and that the error term of this asymptotic formula is Ωx.
format Article
id doaj-art-891cb86df89849ea8507925a1640cf10
institution Kabale University
issn 2314-4629
2314-4785
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-891cb86df89849ea8507925a1640cf102025-02-03T05:52:39ZengWileyJournal of Mathematics2314-46292314-47852021-01-01202110.1155/2021/55744655574465On a Sum Involving the Sum-of-Divisors FunctionFeng Zhao0Jie Wu1Department of Mathematics and Statistics, North China University of Water Resources and Electric Power, Jinshui E Road, Zhengzhou 450046, Henan, ChinaCNRS LAMA 8050, Laboratoire D’Analyse et de Mathématiques Appliquées, Université Paris-Est Créteil, Créteil Cedex 94010, FranceLet σn be the sum of all divisors of n and let t be the integral part of t. In this paper, we shall prove that ∑n≤xσx/n=π2/6x  log  x+Oxlog  x2/3log2  x4/3 for x⟶∞, and that the error term of this asymptotic formula is Ωx.http://dx.doi.org/10.1155/2021/5574465
spellingShingle Feng Zhao
Jie Wu
On a Sum Involving the Sum-of-Divisors Function
Journal of Mathematics
title On a Sum Involving the Sum-of-Divisors Function
title_full On a Sum Involving the Sum-of-Divisors Function
title_fullStr On a Sum Involving the Sum-of-Divisors Function
title_full_unstemmed On a Sum Involving the Sum-of-Divisors Function
title_short On a Sum Involving the Sum-of-Divisors Function
title_sort on a sum involving the sum of divisors function
url http://dx.doi.org/10.1155/2021/5574465
work_keys_str_mv AT fengzhao onasuminvolvingthesumofdivisorsfunction
AT jiewu onasuminvolvingthesumofdivisorsfunction