Generalized Derivations in Semiprime Gamma Rings

Let M be a 2-torsion-free semiprime Γ-ring satisfying the condition aαbβc=aβbαc for all a,b,c∈M,  α,β∈Γ, and let D:M→M be an additive mapping such that D(xαx)=D(x)αx+xαd(x) for all x∈M,  α∈Γ and for some derivation d of M. We prove that D is a generalized derivation.

Saved in:
Bibliographic Details
Main Authors: Kalyan Kumar Dey, Akhil Chandra Paul, Isamiddin S. Rakhimov
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/270132
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832566418262982656
author Kalyan Kumar Dey
Akhil Chandra Paul
Isamiddin S. Rakhimov
author_facet Kalyan Kumar Dey
Akhil Chandra Paul
Isamiddin S. Rakhimov
author_sort Kalyan Kumar Dey
collection DOAJ
description Let M be a 2-torsion-free semiprime Γ-ring satisfying the condition aαbβc=aβbαc for all a,b,c∈M,  α,β∈Γ, and let D:M→M be an additive mapping such that D(xαx)=D(x)αx+xαd(x) for all x∈M,  α∈Γ and for some derivation d of M. We prove that D is a generalized derivation.
format Article
id doaj-art-8914d76f44694741ac1314c60078dee9
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-8914d76f44694741ac1314c60078dee92025-02-03T01:04:18ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/270132270132Generalized Derivations in Semiprime Gamma RingsKalyan Kumar Dey0Akhil Chandra Paul1Isamiddin S. Rakhimov2Department of Mathematics, University of Rajshahi, Rajshahi 6205, BangladeshDepartment of Mathematics, University of Rajshahi, Rajshahi 6205, BangladeshDepartment of Mathematics, FS, and Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia, 43400 Serdang, MalaysiaLet M be a 2-torsion-free semiprime Γ-ring satisfying the condition aαbβc=aβbαc for all a,b,c∈M,  α,β∈Γ, and let D:M→M be an additive mapping such that D(xαx)=D(x)αx+xαd(x) for all x∈M,  α∈Γ and for some derivation d of M. We prove that D is a generalized derivation.http://dx.doi.org/10.1155/2012/270132
spellingShingle Kalyan Kumar Dey
Akhil Chandra Paul
Isamiddin S. Rakhimov
Generalized Derivations in Semiprime Gamma Rings
International Journal of Mathematics and Mathematical Sciences
title Generalized Derivations in Semiprime Gamma Rings
title_full Generalized Derivations in Semiprime Gamma Rings
title_fullStr Generalized Derivations in Semiprime Gamma Rings
title_full_unstemmed Generalized Derivations in Semiprime Gamma Rings
title_short Generalized Derivations in Semiprime Gamma Rings
title_sort generalized derivations in semiprime gamma rings
url http://dx.doi.org/10.1155/2012/270132
work_keys_str_mv AT kalyankumardey generalizedderivationsinsemiprimegammarings
AT akhilchandrapaul generalizedderivationsinsemiprimegammarings
AT isamiddinsrakhimov generalizedderivationsinsemiprimegammarings