Best Constants between Equivalent Norms in Lorentz Sequence Spaces
We find the best constants in inequalities relating the standard norm, the dual norm, and the norm ∥x∥(p,s):=inf{∑k∥x(k)∥p,s}, where the infimum is taken over all finite representations x=∑kx(k) in the classical Lorentz sequence spaces. A crucial point in this analysis is the concept of level seque...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2012/713534 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!