Loosening metal nodes in metal-organic frameworks to facilitate the regulation of valence
The valence of metal nodes in metal-organic frameworks (MOFs) determines their performance in applications while developing an efficient approach for valence regulation is challenging. Here we present a strategy to make the valence regulation much easier by loosening metal nodes by thermal pretreatm...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
KeAi Communications Co. Ltd.
2025-01-01
|
Series: | Fundamental Research |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2667325822003533 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The valence of metal nodes in metal-organic frameworks (MOFs) determines their performance in applications while developing an efficient approach for valence regulation is challenging. Here we present a strategy to make the valence regulation much easier by loosening metal nodes by thermal pretreatment. The typical MOF, HKUST-1, with the tunable valence of Cu nodes, was used as a proof of concept. Thermal pretreatment (producing HK-T) changes the chemical environment and loosens Cu nodes, endowing them with enhanced reducibility. In the subsequent vapor-induced reduction, the yield of Cu+ from Cu2+ conversion in HK-T (producing HK-T-V) reaches 69%, which is higher than that in pristine HKUST-1 (producing HK-V) with a Cu+ yield of 19% as well as the reported yields of target-valence metal nodes in various MOFs (6%–30%). The obtained HK-T-V possessing abundant Cu+ sites can capture 0.809 mmol/g thiophene in adsorptive desulfurization, 2.5 times higher than HK-V and superior to most reported adsorbents. |
---|---|
ISSN: | 2667-3258 |