Simulation of the Lower Head Boiling Water Reactor Vessel in a Severe Accident

The objective of this paper is the simulation and analysis of the BoilingWater Reactor (BWR) lower head during a severe accident. The COUPLE computer code was used in this work to model the heatup of the reactor core material that slumps in the lower head of the reactor pressure vessel. The predicti...

Full description

Saved in:
Bibliographic Details
Main Authors: Alejandro Nuñez-Carrera, Raúl Camargo-Camargo, Gilberto Espinosa-Paredes, Adrián López-García
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2012/305405
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this paper is the simulation and analysis of the BoilingWater Reactor (BWR) lower head during a severe accident. The COUPLE computer code was used in this work to model the heatup of the reactor core material that slumps in the lower head of the reactor pressure vessel. The prediction of the lower head failure is an important issue in the severe accidents field, due to the accident progression and the radiological consequences that are completely different with or without the failure of the Reactor Pressure Vessel (RPV). The release of molten material to the primary containment and the possibility of steam explosion may produce the failure of the primary containment with high radiological consequences. Then, it is important to have a detailed model in order to predict the behavior of the reactor vessel lower head in a severe accident. In this paper, a hypothetical simulation of a Loss of Coolant Accident (LOCA) with simultaneous loss of off-site power and without injection of cooling water is presented with the proposal to evaluate the temperature distribution and heatup of the lower part of the RPV. The SCDAPSIM/RELAP5 3.2 code was used to build the BWR model and conduct the numerical simulation.
ISSN:1687-6075
1687-6083