Evaluating Water Level Variability Under Different Sluice Gate Operation Strategies: A Case Study of the Long Xuyen Quadrangle, Vietnam
The Vietnamese Mekong Delta (VMD) faces increasing challenges due to upstream hydrological fluctuations and climate change, necessitating optimized water management strategies. Sluice gates play a critical role in regulating water levels, yet their effectiveness under different operational modes rem...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Hydrology |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5338/12/5/102 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Vietnamese Mekong Delta (VMD) faces increasing challenges due to upstream hydrological fluctuations and climate change, necessitating optimized water management strategies. Sluice gates play a critical role in regulating water levels, yet their effectiveness under different operational modes remains insufficiently assessed. This study examines water level fluctuations under three sluice gate operation scenarios implemented along the West Sea dike in the Long Xuyen Quadrangle, Kien Giang Province, using the MIKE 11 hydrodynamic model. The model was calibrated and validated using the observed data, yielding high accuracy at key sluice gates, including Kien River and Ba Hon. Three sluice gate management scenarios were tested: (1) the current automatic and partially forced operation, (2) fully automatic gate control, and (3) fully forced hydraulic operation. The simulation results indicate that Scenario 3 maintained water levels above +0.6 m more frequently, ensuring better water availability for irrigation and domestic use, while Scenarios 1 and 2 resulted in lower water levels at certain locations. Additionally, forced operation led to higher gate opening and closing frequencies at key sluices, allowing for more adaptive control over water levels. These findings emphasize the benefits of proactive sluice gate management in improving water regulation and mitigating the water scarcity risks. This study is among the first to provide empirical, scenario-based evidence comparing fully forced, automatic, and mixed sluice gate strategies under varying hydrological conditions in the Long Xuyen Quadrangle. |
|---|---|
| ISSN: | 2306-5338 |