Vibration Reliability Analysis of Aeroengine Rotor Based on Intelligent Neural Network Modeling Framework

In order to improve the accuracy and calculation efficiency of aeroengine rotor vibration reliability analysis, a time-varying rotor vibration reliability analysis method under the aeroengine operating state is proposed. Aiming at the highly nonlinear and strong coupling of factors affecting the rel...

Full description

Saved in:
Bibliographic Details
Main Authors: Jia-Qi Liu, Yun-Wen Feng, Cheng Lu, Wei-Huang Pan, Da Teng
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/9910601
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to improve the accuracy and calculation efficiency of aeroengine rotor vibration reliability analysis, a time-varying rotor vibration reliability analysis method under the aeroengine operating state is proposed. Aiming at the highly nonlinear and strong coupling of factors affecting the reliability of aeroengine rotor vibration, an intelligent neural network modeling framework (short form-INNMF) is proposed. The proposed method is based on DEA, with QAR information as the analysis data, and four factors including engine working state, fuel/oil working state, aircraft flight state, and external conditions are considered to analyse the rotor vibration reliability. INNMF is based on the artificial neural network (ANN) algorithm through improved particle swarm optimization (PSO) algorithm and Bayesian Regularization (BR) optimization. Through the analysis of the rotor vibration reliability of the B737-800 aircraft during a flight mission from Beijing to Urumqi, the time-varying rotor vibration reliability was obtained, which verified the effectiveness and feasibility of the method. The comparison of INNMF, random forest (RF), and ANN shows that INNMF improves analysis accuracy and calculation efficiency. The proposed method and framework can provide useful references for aeroengine rotor vibration analysis, special treatment, maintenance, and design.
ISSN:1070-9622
1875-9203