Tailoring Fusion-Based Photonic Quantum Computing Schemes to Quantum Emitters

Fusion-based quantum computation is a promising quantum computing model where small-sized photonic resource states are simultaneously entangled and measured by fusion gates. Such operations can be readily implemented with scalable photonic hardware: resource states can be deterministically generated...

Full description

Saved in:
Bibliographic Details
Main Authors: Ming Lai Chan, Thomas J. Bell, Love A. Pettersson, Susan X. Chen, Patrick Yard, Anders S. Sørensen, Stefano Paesani
Format: Article
Language:English
Published: American Physical Society 2025-04-01
Series:PRX Quantum
Online Access:http://doi.org/10.1103/PRXQuantum.6.020304
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fusion-based quantum computation is a promising quantum computing model where small-sized photonic resource states are simultaneously entangled and measured by fusion gates. Such operations can be readily implemented with scalable photonic hardware: resource states can be deterministically generated by quantum emitters and fusions require only shallow linear-optical circuits. Here, we propose fusion-based architectures tailored to the capabilities and noise models in quantum emitters. We show that high tolerance to dominant physical error mechanisms can be achieved, with fault-tolerance thresholds of 8% for photon loss, 4% for photon distinguishability between emitters, and spin noise thresholds well above memory-induced errors for typical spin-photon interfaces. Our construction and analysis provide guidelines for the development of photonic quantum hardware targeting fault-tolerant applications with quantum emitters.
ISSN:2691-3399