Two dimensional confinement induced discontinuous chain transitions for augmented electrocaloric cooling

Abstract Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in elec...

Full description

Saved in:
Bibliographic Details
Main Authors: Fang Wang, Zhong-Ye Wang, Yao-Rong Luo, Ming-Ding Li, Yu-Rong Yang, Wei Li, Xiao-Liang Wang, Tiannan Yang, Qun-Dong Shen
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55726-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect. In this work, we utilize two-dimensional polyamide with porous structure and hydrogen bonding to achieve multiple polar conformations with short-range order in the electrocaloric composite polymers. The structure minimizes intermolecular interactions while reducing energy barriers for field-driven polar-nonpolar conformational transitions. The electrocaloric polymer exhibits doubled cooling efficiency at electric fields as low as 40 MV m−1. Additionally, the electrode design achieves a vertical deformation of 2 millimeters, demonstrating the feasibility of self-driven electric refrigeration devices. This porous organic two-dimensional material resolves cooling efficiency limitations from spatial confinement, advancing the integration of two-dimensional materials in flexible electronics.
ISSN:2041-1723