KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA

Kümeleme Analizi Sosyal Bilimlerden Fen Bilimlerine birçok alanda yaygın olarak kullanılan önemli bir araçtır. Kümeleme Analizini gerçekleştirebilmek için hazırlanmış pek çok algoritma mevcuttur. Günümüzde bu algoritmalar ile ilgili olarak en çok tartışılan hususlardan ilk ikisinin, karma tipteki ve...

Full description

Saved in:
Bibliographic Details
Main Author: Emrah Bilgiç
Format: Article
Language:English
Published: Sivas Cumhuriyet Üniversitesi 2019-11-01
Series:Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi
Subjects:
Online Access:https://dergipark.org.tr/tr/download/article-file/867054
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832570642612879360
author Emrah Bilgiç
author_facet Emrah Bilgiç
author_sort Emrah Bilgiç
collection DOAJ
description Kümeleme Analizi Sosyal Bilimlerden Fen Bilimlerine birçok alanda yaygın olarak kullanılan önemli bir araçtır. Kümeleme Analizini gerçekleştirebilmek için hazırlanmış pek çok algoritma mevcuttur. Günümüzde bu algoritmalar ile ilgili olarak en çok tartışılan hususlardan ilk ikisinin, karma tipteki veri setleri için hangi kümeleme algoritmasının kullanılması gerektiği ve en iyi küme sayısının nasıl belirlenebileceği olduğu söylenebilir. Bu çalışmada, farklı ölçeklerle ölçülmüş karma tipteki değişkenlerin değerlerini içeren bir veri seti, bu tip veriler için yeni ve çok iddialı bir şekilde oluşturulmuş olan KAMILA algoritması ile analiz edilecektir. Daha sonra veri seti bu algoritmadan önce karma tipteki veriler için kullanılagelen k-ortalamalar, k-ortaylar ve k-prototipler gibi algoritmalarla da kümelere ayrılacaktır. Bu doğrultuda, İstanbul’da faaliyet gösteren yerel bir süpermarket zincirinden sağlanan alışveriş işlem verileri, R programlama dili kullanılarak analiz edilmiştir. Mağazaları İstanbul’un farklı semtlerinde bulunan bu firmanın müşterileri farklı demografik özelliklere ve farklı satın alma davranışlarına sahiptir. İşlem kolaylığı açısından 999 müşteri için sağlanmış olan veri kümesi, müşterilerin firmanın kârlılığı açısından önem arz eden ürün kategorilerinden alış veriş yapıp yapmadıklarını ve satın alınan ürünlerin toplam fiyatının ne kadar olduklarını içermektedir. Bu veriler müşteri segmentasyonu amacıyla kümeleme analizine tâbi tutulmuştur. Sonuç olarak, KAMILA algoritmasının altın segment olarak isimlendirebilecek segmentteki müşterileri başarıyla tespit edebildiği gözlenmiştir.
format Article
id doaj-art-86c17d75d9af48e8be25d96e487d88fa
institution Kabale University
issn 1303-1279
language English
publishDate 2019-11-01
publisher Sivas Cumhuriyet Üniversitesi
record_format Article
series Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi
spelling doaj-art-86c17d75d9af48e8be25d96e487d88fa2025-02-02T14:33:38ZengSivas Cumhuriyet ÜniversitesiCumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi1303-12792019-11-0120248702057KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMAEmrah Bilgiç0https://orcid.org/0000-0002-9875-2299MUŞ ALPARSLAN ÜNİVERSİTESİKümeleme Analizi Sosyal Bilimlerden Fen Bilimlerine birçok alanda yaygın olarak kullanılan önemli bir araçtır. Kümeleme Analizini gerçekleştirebilmek için hazırlanmış pek çok algoritma mevcuttur. Günümüzde bu algoritmalar ile ilgili olarak en çok tartışılan hususlardan ilk ikisinin, karma tipteki veri setleri için hangi kümeleme algoritmasının kullanılması gerektiği ve en iyi küme sayısının nasıl belirlenebileceği olduğu söylenebilir. Bu çalışmada, farklı ölçeklerle ölçülmüş karma tipteki değişkenlerin değerlerini içeren bir veri seti, bu tip veriler için yeni ve çok iddialı bir şekilde oluşturulmuş olan KAMILA algoritması ile analiz edilecektir. Daha sonra veri seti bu algoritmadan önce karma tipteki veriler için kullanılagelen k-ortalamalar, k-ortaylar ve k-prototipler gibi algoritmalarla da kümelere ayrılacaktır. Bu doğrultuda, İstanbul’da faaliyet gösteren yerel bir süpermarket zincirinden sağlanan alışveriş işlem verileri, R programlama dili kullanılarak analiz edilmiştir. Mağazaları İstanbul’un farklı semtlerinde bulunan bu firmanın müşterileri farklı demografik özelliklere ve farklı satın alma davranışlarına sahiptir. İşlem kolaylığı açısından 999 müşteri için sağlanmış olan veri kümesi, müşterilerin firmanın kârlılığı açısından önem arz eden ürün kategorilerinden alış veriş yapıp yapmadıklarını ve satın alınan ürünlerin toplam fiyatının ne kadar olduklarını içermektedir. Bu veriler müşteri segmentasyonu amacıyla kümeleme analizine tâbi tutulmuştur. Sonuç olarak, KAMILA algoritmasının altın segment olarak isimlendirebilecek segmentteki müşterileri başarıyla tespit edebildiği gözlenmiştir.https://dergipark.org.tr/tr/download/article-file/867054mixed-type data setscluster analysiskamila algorithmkarma tipteki verilerkümeleme analizikamila algoritması
spellingShingle Emrah Bilgiç
KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA
Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi
mixed-type data sets
cluster analysis
kamila algorithm
karma tipteki veriler
kümeleme analizi
kamila algoritması
title KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA
title_full KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA
title_fullStr KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA
title_full_unstemmed KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA
title_short KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA
title_sort karma tipteki verileri kamila k ortalamalar kortaylar ve k prototipler algoritmalariyla kumeleme karsilastirmali bir uygulama
topic mixed-type data sets
cluster analysis
kamila algorithm
karma tipteki veriler
kümeleme analizi
kamila algoritması
url https://dergipark.org.tr/tr/download/article-file/867054
work_keys_str_mv AT emrahbilgic karmatiptekiverilerikamilakortalamalarkortaylarvekprototipleralgoritmalariylakumelemekarsilastirmalibiruygulama