KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA
Kümeleme Analizi Sosyal Bilimlerden Fen Bilimlerine birçok alanda yaygın olarak kullanılan önemli bir araçtır. Kümeleme Analizini gerçekleştirebilmek için hazırlanmış pek çok algoritma mevcuttur. Günümüzde bu algoritmalar ile ilgili olarak en çok tartışılan hususlardan ilk ikisinin, karma tipteki ve...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sivas Cumhuriyet Üniversitesi
2019-11-01
|
Series: | Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi |
Subjects: | |
Online Access: | https://dergipark.org.tr/tr/download/article-file/867054 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832570642612879360 |
---|---|
author | Emrah Bilgiç |
author_facet | Emrah Bilgiç |
author_sort | Emrah Bilgiç |
collection | DOAJ |
description | Kümeleme Analizi Sosyal Bilimlerden Fen Bilimlerine birçok alanda yaygın olarak kullanılan önemli bir araçtır. Kümeleme Analizini gerçekleştirebilmek için hazırlanmış pek çok algoritma mevcuttur. Günümüzde bu algoritmalar ile ilgili olarak en çok tartışılan hususlardan ilk ikisinin, karma tipteki veri setleri için hangi kümeleme algoritmasının kullanılması gerektiği ve en iyi küme sayısının nasıl belirlenebileceği olduğu söylenebilir. Bu çalışmada, farklı ölçeklerle ölçülmüş karma tipteki değişkenlerin değerlerini içeren bir veri seti, bu tip veriler için yeni ve çok iddialı bir şekilde oluşturulmuş olan KAMILA algoritması ile analiz edilecektir. Daha sonra veri seti bu algoritmadan önce karma tipteki veriler için kullanılagelen k-ortalamalar, k-ortaylar ve k-prototipler gibi algoritmalarla da kümelere ayrılacaktır. Bu doğrultuda, İstanbul’da faaliyet gösteren yerel bir süpermarket zincirinden sağlanan alışveriş işlem verileri, R programlama dili kullanılarak analiz edilmiştir. Mağazaları İstanbul’un farklı semtlerinde bulunan bu firmanın müşterileri farklı demografik özelliklere ve farklı satın alma davranışlarına sahiptir. İşlem kolaylığı açısından 999 müşteri için sağlanmış olan veri kümesi, müşterilerin firmanın kârlılığı açısından önem arz eden ürün kategorilerinden alış veriş yapıp yapmadıklarını ve satın alınan ürünlerin toplam fiyatının ne kadar olduklarını içermektedir. Bu veriler müşteri segmentasyonu amacıyla kümeleme analizine tâbi tutulmuştur. Sonuç olarak, KAMILA algoritmasının altın segment olarak isimlendirebilecek segmentteki müşterileri başarıyla tespit edebildiği gözlenmiştir. |
format | Article |
id | doaj-art-86c17d75d9af48e8be25d96e487d88fa |
institution | Kabale University |
issn | 1303-1279 |
language | English |
publishDate | 2019-11-01 |
publisher | Sivas Cumhuriyet Üniversitesi |
record_format | Article |
series | Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi |
spelling | doaj-art-86c17d75d9af48e8be25d96e487d88fa2025-02-02T14:33:38ZengSivas Cumhuriyet ÜniversitesiCumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi1303-12792019-11-0120248702057KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMAEmrah Bilgiç0https://orcid.org/0000-0002-9875-2299MUŞ ALPARSLAN ÜNİVERSİTESİKümeleme Analizi Sosyal Bilimlerden Fen Bilimlerine birçok alanda yaygın olarak kullanılan önemli bir araçtır. Kümeleme Analizini gerçekleştirebilmek için hazırlanmış pek çok algoritma mevcuttur. Günümüzde bu algoritmalar ile ilgili olarak en çok tartışılan hususlardan ilk ikisinin, karma tipteki veri setleri için hangi kümeleme algoritmasının kullanılması gerektiği ve en iyi küme sayısının nasıl belirlenebileceği olduğu söylenebilir. Bu çalışmada, farklı ölçeklerle ölçülmüş karma tipteki değişkenlerin değerlerini içeren bir veri seti, bu tip veriler için yeni ve çok iddialı bir şekilde oluşturulmuş olan KAMILA algoritması ile analiz edilecektir. Daha sonra veri seti bu algoritmadan önce karma tipteki veriler için kullanılagelen k-ortalamalar, k-ortaylar ve k-prototipler gibi algoritmalarla da kümelere ayrılacaktır. Bu doğrultuda, İstanbul’da faaliyet gösteren yerel bir süpermarket zincirinden sağlanan alışveriş işlem verileri, R programlama dili kullanılarak analiz edilmiştir. Mağazaları İstanbul’un farklı semtlerinde bulunan bu firmanın müşterileri farklı demografik özelliklere ve farklı satın alma davranışlarına sahiptir. İşlem kolaylığı açısından 999 müşteri için sağlanmış olan veri kümesi, müşterilerin firmanın kârlılığı açısından önem arz eden ürün kategorilerinden alış veriş yapıp yapmadıklarını ve satın alınan ürünlerin toplam fiyatının ne kadar olduklarını içermektedir. Bu veriler müşteri segmentasyonu amacıyla kümeleme analizine tâbi tutulmuştur. Sonuç olarak, KAMILA algoritmasının altın segment olarak isimlendirebilecek segmentteki müşterileri başarıyla tespit edebildiği gözlenmiştir.https://dergipark.org.tr/tr/download/article-file/867054mixed-type data setscluster analysiskamila algorithmkarma tipteki verilerkümeleme analizikamila algoritması |
spellingShingle | Emrah Bilgiç KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi mixed-type data sets cluster analysis kamila algorithm karma tipteki veriler kümeleme analizi kamila algoritması |
title | KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA |
title_full | KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA |
title_fullStr | KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA |
title_full_unstemmed | KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA |
title_short | KARMA TİPTEKİ VERİLERİ KAMILA, K-ORTALAMALAR, KORTAYLAR ve K-PROTOTİPLER ALGORİTMALARIYLA KÜMELEME: KARŞILAŞTIRMALI BİR UYGULAMA |
title_sort | karma tipteki verileri kamila k ortalamalar kortaylar ve k prototipler algoritmalariyla kumeleme karsilastirmali bir uygulama |
topic | mixed-type data sets cluster analysis kamila algorithm karma tipteki veriler kümeleme analizi kamila algoritması |
url | https://dergipark.org.tr/tr/download/article-file/867054 |
work_keys_str_mv | AT emrahbilgic karmatiptekiverilerikamilakortalamalarkortaylarvekprototipleralgoritmalariylakumelemekarsilastirmalibiruygulama |