Asymptotic Behavior of the Stochastic Rayleigh-van der Pol Equations with Jumps
We study the stability, attractors, and bifurcation of stochastic Rayleigh-van der Pol equations with jumps. We first established the stochastic stability and the large deviations results for the stochastic Rayleigh-van der Pol equations. We then examine the existence limit circle and obtain some ne...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/432704 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the stability, attractors, and bifurcation of stochastic Rayleigh-van der Pol equations with jumps. We first established the stochastic stability and the large deviations results for the stochastic Rayleigh-van der Pol equations. We then examine the existence limit circle and obtain some new random attractors. We further establish stochastic bifurcation of random attractors. Interestingly, this shows the effect of the Poisson noise which can stabilize or unstabilize the system which is significantly different from the classical Brownian motion process. |
---|---|
ISSN: | 1085-3375 1687-0409 |