Multiscale guided attention network for optic disc segmentation of retinal images

Optic disc (OD) segmentation from retinal images is crucial for diagnosing, assessing, and tracking the progression of several sight-threatening diseases. This paper presents a deep machine-learning method for semantically segmenting OD from retinal images. The method is named multiscale guided atte...

Full description

Saved in:
Bibliographic Details
Main Authors: A Z M Ehtesham Chowdhury, Andrew Mehnert, Graham Mann, William H. Morgan, Ferdous Sohel
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Computer Methods and Programs in Biomedicine Update
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666990025000047
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optic disc (OD) segmentation from retinal images is crucial for diagnosing, assessing, and tracking the progression of several sight-threatening diseases. This paper presents a deep machine-learning method for semantically segmenting OD from retinal images. The method is named multiscale guided attention network (MSGANet-OD), comprising encoders for extracting multiscale features and decoders for constructing segmentation maps from the extracted features. The decoder also includes a guided attention module that incorporates features related to structural, contextual, and illumination information to segment OD. A custom loss function is proposed to retain the optic disc's geometrical shape (i.e., elliptical) constraint and to alleviate the blood vessels' influence in the overlapping region between the OD and vessels. MSGANet-OD was trained and tested on an in-house clinical color retinal image dataset captured during ophthalmodynamometry as well as on several publicly available color fundus image datasets, e.g., DRISHTI-GS, RIM-ONE-r3, and REFUGE1. Experimental results show that MSGANet-OD achieved superior OD segmentation performance from ophthalmodynamometry images compared to widely used segmentation methods. Our method also achieved competitive results compared to state-of-the-art OD segmentation methods on public datasets. The proposed method can be used in automated systems to quantitatively assess optic nerve head abnormalities (e.g., glaucoma, optic disc neuropathy) and vascular changes in the OD region.
ISSN:2666-9900