Epibrassinolide Regulates <i>Lhcb5</i> Expression Though the Transcription Factor of MYBR17 in Maize

Photosynthesis, which is the foundation of crop growth and development, is accompanied by complex transcriptional regulatory mechanisms. Research has established that brassinosteroids (BRs) play a role in regulating plant photosynthesis, with the majority of research focusing on the physiological le...

Full description

Saved in:
Bibliographic Details
Main Authors: Hui Li, Xuewu He, Huayang Lv, Hongyu Zhang, Fuhai Peng, Jun Song, Wenjuan Liu, Junjie Zhang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/1/94
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photosynthesis, which is the foundation of crop growth and development, is accompanied by complex transcriptional regulatory mechanisms. Research has established that brassinosteroids (BRs) play a role in regulating plant photosynthesis, with the majority of research focusing on the physiological level and regulation of rate-limiting enzymes in the dark reactions of photosynthesis. However, studies on their effects on maize photosynthesis, specifically on light-harvesting antenna proteins, have yet to be conducted. The peripheral light-harvesting antenna protein <i>Lhcb5</i> is crucial for capturing and dissipating light energy. Herein, by analyzing the transcriptomic data of maize seedling leaves treated with 24-epibrassinolide (EBR) and verifying them using qPCR experiments, we found that the MYBR17 transcription factor may regulate the expression of the photosynthetic light-harvesting antenna protein gene. Further experiments using protoplast transient expression and yeast one-hybrid tests showed that the maize transcription factor MYBR17 responds to EBR signals and binds to the promoter of the light-harvesting antenna protein <i>Lhcb5</i>, thereby upregulating its expression. These results were validated using an Arabidopsis <i>mybr17</i> mutant. Our results offer a theoretical foundation for the application of BRs to enhance the photosynthetic efficiency of maize.
ISSN:2218-273X