Type-dependent stochastic Ising model describing the dynamics of a non-symmetric feedback module

We study an alternative approach to model the dynamical behaviors of biological feedback loop, that is, a type-dependent spin system, this class of stochastic models was introduced by Fernández et. al [13], and are useful since take account to inherent variability of gene expression.We analyze a non...

Full description

Saved in:
Bibliographic Details
Main Author: Manuel González-Navarrete
Format: Article
Language:English
Published: AIMS Press 2016-06-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2016026
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study an alternative approach to model the dynamical behaviors of biological feedback loop, that is, a type-dependent spin system, this class of stochastic models was introduced by Fernández et. al [13], and are useful since take account to inherent variability of gene expression.We analyze a non-symmetric feedback module being an extension for the repressilator, the first synthetic biological oscillator, invented by Elowitz and Leibler [7]. We consider a mean-field dynamics for a type-dependent Ising model, and then study the empirical-magnetization vector representing concentration of molecules. We apply a convergence result from stochastic jump processes to deterministic trajectories and present a bifurcation analysis for the associated dynamical system. We show that non-symmetric module under study can exhibit very rich behaviours, including the empirical oscillations described by repressilator.
ISSN:1551-0018