Use of Response Surface Metamodels for Identification of Stiffness and Damping Coefficients in a Simple Dynamic System

Metamodels have been used with success in many areas of engineering for decades but only recently in the field of structural dynamics. A metamodel is a fast running surrogate that is typically used to aid an analyst or test engineer in the fast and efficient exploration of the design space. Response...

Full description

Saved in:
Bibliographic Details
Main Authors: A.C. Rutherford, D.J. Inman, G. Park, F.M. Hemez
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2005/484283
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metamodels have been used with success in many areas of engineering for decades but only recently in the field of structural dynamics. A metamodel is a fast running surrogate that is typically used to aid an analyst or test engineer in the fast and efficient exploration of the design space. Response surface metamodels are used in this work to perform parameter identification of a simple five degree of freedom system, motivated by their low training requirements and ease of use. In structural dynamics applications, response surface metamodels have been utilized in a forward sense, for activities such as sensitivity analysis or uncertainty quantification. In this study a polynomial response surface model is developed, relating system parameters to measurable output features. Once this relationship is established, the response surface is used in an inverse sense to identify system parameters from measured output features.
ISSN:1070-9622
1875-9203