A New Fractional-Order Map with Infinite Number of Equilibria and Its Encryption Application
The study of the chaotic dynamics in fractional-order discrete-time systems has received great attention over the last years. Some efforts have been also devoted to analyze fractional maps with special features. This paper makes a contribution to the topic by introducing a new fractional map that is...
Saved in:
Main Authors: | Ahlem Gasri, Amina-Aicha Khennaoui, Adel Ouannas, Giuseppe Grassi, Apostolos Iatropoulos, Lazaros Moysis, Christos Volos |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2022/3592422 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
On the Q–S Chaos Synchronization of Fractional-Order Discrete-Time Systems: General Method and Examples
by: Adel Ouannas, et al.
Published: (2018-01-01) -
Fractional Grassi–Miller Map Based on the Caputo h-Difference Operator: Linear Methods for Chaos Control and Synchronization
by: Ibtissem Talbi, et al.
Published: (2020-01-01) -
Development of a Family of Chaotic Systems with Infinite Equilibria and Its Application for Image Encryption
by: Xiaofeng Li, et al.
Published: (2022-01-01) -
Periodic orbits of maps with an infinite number of partition points
by: Manny Scarowsky, et al.
Published: (1989-01-01) -
Testing the Strength of Chaotic Systems as Seeds in a Pseudo Random Bit Generator
by: Lazaros Moysis, et al.
Published: (2025-01-01)