Stability of generalized additive Cauchy equations

A familiar functional equation f(ax+b)=cf(x) will be solved in the class of functions f:ℝ→ℝ. Applying this result we will investigate the Hyers-Ulam-Rassias stability problem of the generalized additive Cauchy equation f(a1x1+⋯+amxm+x0)=∑i=1mbif(ai1x1+⋯+aimxm) in connection with the question of Rass...

Full description

Saved in:
Bibliographic Details
Main Authors: Soon-Mo Jung, Ki-Suk Lee
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171200005184
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A familiar functional equation f(ax+b)=cf(x) will be solved in the class of functions f:ℝ→ℝ. Applying this result we will investigate the Hyers-Ulam-Rassias stability problem of the generalized additive Cauchy equation f(a1x1+⋯+amxm+x0)=∑i=1mbif(ai1x1+⋯+aimxm) in connection with the question of Rassias and Tabor.
ISSN:0161-1712
1687-0425