Predicting Photovoltaic Module Lifespan Based on Combined Stress Tests and Latent Heat Analysis
In this study, long-term reliability tests for high-power-density photovoltaic (PV) modules were introduced and analyzed in accordance with IEC 61215 and light-combined damp heat cycles, such as DIN 75220. The results indicated that post light soaking procedure, light-combined damp heat cycles cause...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/18/2/304 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, long-term reliability tests for high-power-density photovoltaic (PV) modules were introduced and analyzed in accordance with IEC 61215 and light-combined damp heat cycles, such as DIN 75220. The results indicated that post light soaking procedure, light-combined damp heat cycles caused a 3.51% power drop, while IEC standard tests (DH1000 and TC200) caused only 0.87% and 1.32% power drops, respectively. IEC 61215 failed to assess the long-term reliability of the high-power-density PV module, such as the passivated emitter rear cell. Additionally, based on the combined test, the latent heat (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>m</mi><mi>o</mi><mi>d</mi></mrow></msub></mrow></semantics></math></inline-formula>) of the module was introduced to predict its degradation rate and to fit the prediction curve of the product guaranteed by the PV module manufacturers. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>m</mi><mi>o</mi><mi>d</mi></mrow></msub></mrow></semantics></math></inline-formula> facilitates in predicting a PV module’s lifespan according to the environmental factors of the actual installation area. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>m</mi><mi>o</mi><mi>d</mi></mrow></msub></mrow></semantics></math></inline-formula> values of the PV stations in water environments, such as floating and/or marine PVs, indicated that they would last 7.2 years more than those on a rooftop, assuming that latent heat is the only cause of deterioration. Therefore, extending module life and improving power generation efficiency by determining installation sites to minimize latent heat would be advantageous. |
---|---|
ISSN: | 1996-1073 |