Channeled Polarimetry for Magnetic Field/Current Detection

Magneto-optical magnetic field/current sensors are based on the Faraday effect, which involves changing the polarized state of light. Polarimetric methods are therefore used for measuring polarization characteristics. Channeled polarimetry allows polarization information to be obtained from the anal...

Full description

Saved in:
Bibliographic Details
Main Authors: Georgi Dyankov, Petar Kolev, Tinko A. Eftimov, Evdokiya O. Hikova, Hristo Kisov
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/466
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magneto-optical magnetic field/current sensors are based on the Faraday effect, which involves changing the polarized state of light. Polarimetric methods are therefore used for measuring polarization characteristics. Channeled polarimetry allows polarization information to be obtained from the analysis of the spectral domain. Although this allows the characterization of Faraday materials, the method has not yet been used for detection in magneto-optical sensors. This paper reports experimental results for magnetic field/current detection using the channeled polarimetry method. It is shown that in contrast to other methods, this method allows the detection of the phase shift caused by Faraday rotation alone, making the detection independent of temperature. Although an increase in measurement accuracy is required for practical applications by refining the data processing, the experimental results obtained show that this method offers a new approach to improving the performance of magneto-optical current sensors.
ISSN:1424-8220