A Measurement Approach for Characterizing Temperature-Related Emissivity Variability in High-Emissivity Materials
The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/2/487 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent attention in high-temperature applications, especially for replacing fossil-fuel-dependent heating with greener solutions in energy-intensive processes, renewed interest in characterizing materials radiant properties rose. This work presents a measurement procedure for characterizing the total emissivity of high-emissivity materials exploiting microwaves for heating the test material. The procedure grounds on a sequential approach, using a reference material of known emissivity (e.g., high-emissivity coating, already characterized sample holder, etc.) to derive the target material total emissivity. Uncertainty analysis is performed to provide a metrological characterization of the approach. The procedure is validated on target materials of known emissivity, focusing on high-emissivity materials commonly employed in microwave heating processes. Results are compatible with reference literature and material datasheets, demonstrating the validity of the proposed approach. |
---|---|
ISSN: | 1424-8220 |