Generalized Moisil-Théodoresco Systems and Cauchy Integral Decompositions

Let ℝ0,m+1(s) be the space of s-vectors (0≤s≤m+1) in the Clifford algebra ℝ0,m+1 constructed over the quadratic vector space ℝ0,m+1, let r,p,q∈ℕ with 0≤r≤m+1, 0≤p≤q, and r+2q≤m+1, and let ℝ0,m+1(r,p,q)=∑j=pq⨁ ℝ0,m+1(r+2j). Then, an ℝ0,m+1(r,p,q)-valued smooth function W defined in an open subset Ω⊂ℝ...

Full description

Saved in:
Bibliographic Details
Main Authors: Ricardo Abreu Blaya, Juan Bory Reyes, Richard Delanghe, Frank Sommen
Format: Article
Language:English
Published: Wiley 2008-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2008/746946
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832547518817239040
author Ricardo Abreu Blaya
Juan Bory Reyes
Richard Delanghe
Frank Sommen
author_facet Ricardo Abreu Blaya
Juan Bory Reyes
Richard Delanghe
Frank Sommen
author_sort Ricardo Abreu Blaya
collection DOAJ
description Let ℝ0,m+1(s) be the space of s-vectors (0≤s≤m+1) in the Clifford algebra ℝ0,m+1 constructed over the quadratic vector space ℝ0,m+1, let r,p,q∈ℕ with 0≤r≤m+1, 0≤p≤q, and r+2q≤m+1, and let ℝ0,m+1(r,p,q)=∑j=pq⨁ ℝ0,m+1(r+2j). Then, an ℝ0,m+1(r,p,q)-valued smooth function W defined in an open subset Ω⊂ℝm+1 is said to satisfy the generalized Moisil-Théodoresco system of type (r,p,q) if ∂xW=0 in Ω, where ∂x is the Dirac operator in ℝm+1. A structure theorem is proved for such functions, based on the construction of conjugate harmonic pairs. Furthermore, if Ω is bounded with boundary Γ, where Γ is an Ahlfors-David regular surface, and if W is a ℝ0,m+1(r,p,q)-valued Hölder continuous function on Γ, then necessary and sufficient conditions are given under which W admits on Γ a Cauchy integral decomposition W=W++W−.
format Article
id doaj-art-842abefcab0340c4a7b6a96f4e66ed33
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2008-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-842abefcab0340c4a7b6a96f4e66ed332025-02-03T06:44:27ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252008-01-01200810.1155/2008/746946746946Generalized Moisil-Théodoresco Systems and Cauchy Integral DecompositionsRicardo Abreu Blaya0Juan Bory Reyes1Richard Delanghe2Frank Sommen3Facultad de Informática y Matemática, Universidad de Holguín, Holguín 80100, CubaDepartamento de Matemática, Facultad de Matemática y Computación, Universidad de Oriente, Santiago de Cuba 90500, CubaDepartment of Mathematical Analysis, Ghent University, 9000 Ghent, BelgiumDepartment of Mathematical Analysis, Ghent University, 9000 Ghent, BelgiumLet ℝ0,m+1(s) be the space of s-vectors (0≤s≤m+1) in the Clifford algebra ℝ0,m+1 constructed over the quadratic vector space ℝ0,m+1, let r,p,q∈ℕ with 0≤r≤m+1, 0≤p≤q, and r+2q≤m+1, and let ℝ0,m+1(r,p,q)=∑j=pq⨁ ℝ0,m+1(r+2j). Then, an ℝ0,m+1(r,p,q)-valued smooth function W defined in an open subset Ω⊂ℝm+1 is said to satisfy the generalized Moisil-Théodoresco system of type (r,p,q) if ∂xW=0 in Ω, where ∂x is the Dirac operator in ℝm+1. A structure theorem is proved for such functions, based on the construction of conjugate harmonic pairs. Furthermore, if Ω is bounded with boundary Γ, where Γ is an Ahlfors-David regular surface, and if W is a ℝ0,m+1(r,p,q)-valued Hölder continuous function on Γ, then necessary and sufficient conditions are given under which W admits on Γ a Cauchy integral decomposition W=W++W−.http://dx.doi.org/10.1155/2008/746946
spellingShingle Ricardo Abreu Blaya
Juan Bory Reyes
Richard Delanghe
Frank Sommen
Generalized Moisil-Théodoresco Systems and Cauchy Integral Decompositions
International Journal of Mathematics and Mathematical Sciences
title Generalized Moisil-Théodoresco Systems and Cauchy Integral Decompositions
title_full Generalized Moisil-Théodoresco Systems and Cauchy Integral Decompositions
title_fullStr Generalized Moisil-Théodoresco Systems and Cauchy Integral Decompositions
title_full_unstemmed Generalized Moisil-Théodoresco Systems and Cauchy Integral Decompositions
title_short Generalized Moisil-Théodoresco Systems and Cauchy Integral Decompositions
title_sort generalized moisil theodoresco systems and cauchy integral decompositions
url http://dx.doi.org/10.1155/2008/746946
work_keys_str_mv AT ricardoabreublaya generalizedmoisiltheodorescosystemsandcauchyintegraldecompositions
AT juanboryreyes generalizedmoisiltheodorescosystemsandcauchyintegraldecompositions
AT richarddelanghe generalizedmoisiltheodorescosystemsandcauchyintegraldecompositions
AT franksommen generalizedmoisiltheodorescosystemsandcauchyintegraldecompositions