Cyclodehydrogenation of molecular nanographene precursors catalyzed by atomic hydrogen
Abstract Atomically precise synthesis of graphene nanostructures on semiconductors and insulators has been a formidable challenge. In particular, the metallic substrates needed to catalyze cyclodehydrogenative planarization reactions limit subsequent applications that exploit the electronic and/or m...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-54774-1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Atomically precise synthesis of graphene nanostructures on semiconductors and insulators has been a formidable challenge. In particular, the metallic substrates needed to catalyze cyclodehydrogenative planarization reactions limit subsequent applications that exploit the electronic and/or magnetic structure of graphene derivatives. Here, we introduce a protocol in which an on-surface reaction is initiated and carried out regardless of the substrate type. We demonstrate that, counterintuitively, atomic hydrogen can play the role of a catalyst in the cyclodehydrogenative planarization reaction. The high efficiency of the method is demonstrated by the nanographene synthesis on metallic Au, semiconducting TiO2, Ge:H, as well as on inert and insulating Si/SiO2 and thin NaCl layers. The hydrogen-catalyzed cyclodehydrogenation reaction reported here leads towards the integration of graphene derivatives in optoelectronic devices as well as developing the field of on-surface synthesis by means of catalytic transformations. It also inspires merging of atomically shaped graphene-based nanostructures with low-dimensional inorganic units into functional devices. |
---|---|
ISSN: | 2041-1723 |