3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
We consider the fermionization of a bosonic-free theory characterized by the 3+1D scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the 4+1D topological BF theory. In this model, adopting the Sommerfield tomographic representation of quan...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Advances in High Energy Physics |
Online Access: | http://dx.doi.org/10.1155/2014/635286 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832553762355412992 |
---|---|
author | Andrea Amoretti Alessandro Braggio Giacomo Caruso Nicola Maggiore Nicodemo Magnoli |
author_facet | Andrea Amoretti Alessandro Braggio Giacomo Caruso Nicola Maggiore Nicodemo Magnoli |
author_sort | Andrea Amoretti |
collection | DOAJ |
description | We consider the fermionization of a bosonic-free theory characterized by the 3+1D scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the 4+1D topological BF theory. In this model, adopting the Sommerfield tomographic representation of quantized bosonic fields, we explicitly build a fermionic operator and its associated Klein factor such that it satisfies the correct anticommutation relations. Interestingly, we demonstrate that this operator satisfies the massless Dirac equation and that it can be identified with a 3+1D Weyl spinor. Finally, as an explicit example, we write the integrated charge density in terms of the tomographic transformed bosonic degrees of freedom. |
format | Article |
id | doaj-art-832c56bf096f4968974ec5a73e2092ce |
institution | Kabale University |
issn | 1687-7357 1687-7365 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in High Energy Physics |
spelling | doaj-art-832c56bf096f4968974ec5a73e2092ce2025-02-03T05:53:17ZengWileyAdvances in High Energy Physics1687-73571687-73652014-01-01201410.1155/2014/6352866352863+1D Massless Weyl Spinors from Bosonic Scalar-Tensor DualityAndrea Amoretti0Alessandro Braggio1Giacomo Caruso2Nicola Maggiore3Nicodemo Magnoli4Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, ItalyINFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, ItalyDipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, ItalyDipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, ItalyDipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, ItalyWe consider the fermionization of a bosonic-free theory characterized by the 3+1D scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the 4+1D topological BF theory. In this model, adopting the Sommerfield tomographic representation of quantized bosonic fields, we explicitly build a fermionic operator and its associated Klein factor such that it satisfies the correct anticommutation relations. Interestingly, we demonstrate that this operator satisfies the massless Dirac equation and that it can be identified with a 3+1D Weyl spinor. Finally, as an explicit example, we write the integrated charge density in terms of the tomographic transformed bosonic degrees of freedom.http://dx.doi.org/10.1155/2014/635286 |
spellingShingle | Andrea Amoretti Alessandro Braggio Giacomo Caruso Nicola Maggiore Nicodemo Magnoli 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality Advances in High Energy Physics |
title | 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality |
title_full | 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality |
title_fullStr | 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality |
title_full_unstemmed | 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality |
title_short | 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality |
title_sort | 3 1d massless weyl spinors from bosonic scalar tensor duality |
url | http://dx.doi.org/10.1155/2014/635286 |
work_keys_str_mv | AT andreaamoretti 31dmasslessweylspinorsfrombosonicscalartensorduality AT alessandrobraggio 31dmasslessweylspinorsfrombosonicscalartensorduality AT giacomocaruso 31dmasslessweylspinorsfrombosonicscalartensorduality AT nicolamaggiore 31dmasslessweylspinorsfrombosonicscalartensorduality AT nicodemomagnoli 31dmasslessweylspinorsfrombosonicscalartensorduality |