3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality

We consider the fermionization of a bosonic-free theory characterized by the 3+1D scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the 4+1D topological BF theory. In this model, adopting the Sommerfield tomographic representation of quan...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrea Amoretti, Alessandro Braggio, Giacomo Caruso, Nicola Maggiore, Nicodemo Magnoli
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2014/635286
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553762355412992
author Andrea Amoretti
Alessandro Braggio
Giacomo Caruso
Nicola Maggiore
Nicodemo Magnoli
author_facet Andrea Amoretti
Alessandro Braggio
Giacomo Caruso
Nicola Maggiore
Nicodemo Magnoli
author_sort Andrea Amoretti
collection DOAJ
description We consider the fermionization of a bosonic-free theory characterized by the 3+1D scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the 4+1D topological BF theory. In this model, adopting the Sommerfield tomographic representation of quantized bosonic fields, we explicitly build a fermionic operator and its associated Klein factor such that it satisfies the correct anticommutation relations. Interestingly, we demonstrate that this operator satisfies the massless Dirac equation and that it can be identified with a 3+1D Weyl spinor. Finally, as an explicit example, we write the integrated charge density in terms of the tomographic transformed bosonic degrees of freedom.
format Article
id doaj-art-832c56bf096f4968974ec5a73e2092ce
institution Kabale University
issn 1687-7357
1687-7365
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Advances in High Energy Physics
spelling doaj-art-832c56bf096f4968974ec5a73e2092ce2025-02-03T05:53:17ZengWileyAdvances in High Energy Physics1687-73571687-73652014-01-01201410.1155/2014/6352866352863+1D Massless Weyl Spinors from Bosonic Scalar-Tensor DualityAndrea Amoretti0Alessandro Braggio1Giacomo Caruso2Nicola Maggiore3Nicodemo Magnoli4Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, ItalyINFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, ItalyDipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, ItalyDipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, ItalyDipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, ItalyWe consider the fermionization of a bosonic-free theory characterized by the 3+1D scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the 4+1D topological BF theory. In this model, adopting the Sommerfield tomographic representation of quantized bosonic fields, we explicitly build a fermionic operator and its associated Klein factor such that it satisfies the correct anticommutation relations. Interestingly, we demonstrate that this operator satisfies the massless Dirac equation and that it can be identified with a 3+1D Weyl spinor. Finally, as an explicit example, we write the integrated charge density in terms of the tomographic transformed bosonic degrees of freedom.http://dx.doi.org/10.1155/2014/635286
spellingShingle Andrea Amoretti
Alessandro Braggio
Giacomo Caruso
Nicola Maggiore
Nicodemo Magnoli
3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
Advances in High Energy Physics
title 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
title_full 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
title_fullStr 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
title_full_unstemmed 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
title_short 3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
title_sort 3 1d massless weyl spinors from bosonic scalar tensor duality
url http://dx.doi.org/10.1155/2014/635286
work_keys_str_mv AT andreaamoretti 31dmasslessweylspinorsfrombosonicscalartensorduality
AT alessandrobraggio 31dmasslessweylspinorsfrombosonicscalartensorduality
AT giacomocaruso 31dmasslessweylspinorsfrombosonicscalartensorduality
AT nicolamaggiore 31dmasslessweylspinorsfrombosonicscalartensorduality
AT nicodemomagnoli 31dmasslessweylspinorsfrombosonicscalartensorduality