Chemical weathering as a tool for distinguishing river terraces of varying ages: a case study of the Qingyi River on the eastern Tibetan Plateau

River terraces are essential objects for studying Quaternary landforms and active tectonics. Previous researchers often identified river terraces formed in different eras by height and landmark strata. However, terraces are usually scattered in regions with severe erosion, making comparing terraces...

Full description

Saved in:
Bibliographic Details
Main Authors: Diwei Hua, Dawei Jiang, Shimin Zhang, Rui Ding, Yongqi Chen
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-01-01
Series:Frontiers in Earth Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/feart.2025.1534898/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832592419769548800
author Diwei Hua
Dawei Jiang
Shimin Zhang
Rui Ding
Yongqi Chen
author_facet Diwei Hua
Dawei Jiang
Shimin Zhang
Rui Ding
Yongqi Chen
author_sort Diwei Hua
collection DOAJ
description River terraces are essential objects for studying Quaternary landforms and active tectonics. Previous researchers often identified river terraces formed in different eras by height and landmark strata. However, terraces are usually scattered in regions with severe erosion, making comparing terraces of the same level challenging. Some sedimentary analyses, including abrasion of gravels, hardness of gravels, and weathering rind thickness, have been applied to compare terraces but proved limited and not quantitative. In this study, we interpreted and surveyed the terraces of the Qingyi River, which runs through the Longmen Shan Mountain in the eastern edge of the Tibetan Plateau. A systematic approach was presented to quantitatively compare river terraces in regions of high precipitation and erosion. Firstly, we summarized the interfering factors on sedimentation, the method of collecting samples, and the choice of testing materials. Secondly, weathering indicators derived from major element testing were applied to compare terraces of different ages. Finally, we concluded the relationship between weathering degree, the terrace age, and the terrace height. The results indicated that, within the terrace age range of 300 ka, the sediments in the terrace of the Qingyi river show a linearly increasing weathering trend. It proved that the degree of chemical weathering indicated by major elements can be well applied to studying river terraces and reflect the weathering differences between terraces of different ages, solving the problem of quantitative terrace comparison. Moreover, by combining the analysis of paleoclimate data, we reconstructed the weathering mechanisms of the terraces, which are controlled by the alternation between glacial and interglacial stages.
format Article
id doaj-art-82e7350d64824160abcf79f8a69f4af1
institution Kabale University
issn 2296-6463
language English
publishDate 2025-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Earth Science
spelling doaj-art-82e7350d64824160abcf79f8a69f4af12025-01-21T08:37:07ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632025-01-011310.3389/feart.2025.15348981534898Chemical weathering as a tool for distinguishing river terraces of varying ages: a case study of the Qingyi River on the eastern Tibetan PlateauDiwei HuaDawei JiangShimin ZhangRui DingYongqi ChenRiver terraces are essential objects for studying Quaternary landforms and active tectonics. Previous researchers often identified river terraces formed in different eras by height and landmark strata. However, terraces are usually scattered in regions with severe erosion, making comparing terraces of the same level challenging. Some sedimentary analyses, including abrasion of gravels, hardness of gravels, and weathering rind thickness, have been applied to compare terraces but proved limited and not quantitative. In this study, we interpreted and surveyed the terraces of the Qingyi River, which runs through the Longmen Shan Mountain in the eastern edge of the Tibetan Plateau. A systematic approach was presented to quantitatively compare river terraces in regions of high precipitation and erosion. Firstly, we summarized the interfering factors on sedimentation, the method of collecting samples, and the choice of testing materials. Secondly, weathering indicators derived from major element testing were applied to compare terraces of different ages. Finally, we concluded the relationship between weathering degree, the terrace age, and the terrace height. The results indicated that, within the terrace age range of 300 ka, the sediments in the terrace of the Qingyi river show a linearly increasing weathering trend. It proved that the degree of chemical weathering indicated by major elements can be well applied to studying river terraces and reflect the weathering differences between terraces of different ages, solving the problem of quantitative terrace comparison. Moreover, by combining the analysis of paleoclimate data, we reconstructed the weathering mechanisms of the terraces, which are controlled by the alternation between glacial and interglacial stages.https://www.frontiersin.org/articles/10.3389/feart.2025.1534898/fulleastern Tibetan PlateauQingyi Riverriver terracegeomorphological interpretationterrace comparison
spellingShingle Diwei Hua
Dawei Jiang
Shimin Zhang
Rui Ding
Yongqi Chen
Chemical weathering as a tool for distinguishing river terraces of varying ages: a case study of the Qingyi River on the eastern Tibetan Plateau
Frontiers in Earth Science
eastern Tibetan Plateau
Qingyi River
river terrace
geomorphological interpretation
terrace comparison
title Chemical weathering as a tool for distinguishing river terraces of varying ages: a case study of the Qingyi River on the eastern Tibetan Plateau
title_full Chemical weathering as a tool for distinguishing river terraces of varying ages: a case study of the Qingyi River on the eastern Tibetan Plateau
title_fullStr Chemical weathering as a tool for distinguishing river terraces of varying ages: a case study of the Qingyi River on the eastern Tibetan Plateau
title_full_unstemmed Chemical weathering as a tool for distinguishing river terraces of varying ages: a case study of the Qingyi River on the eastern Tibetan Plateau
title_short Chemical weathering as a tool for distinguishing river terraces of varying ages: a case study of the Qingyi River on the eastern Tibetan Plateau
title_sort chemical weathering as a tool for distinguishing river terraces of varying ages a case study of the qingyi river on the eastern tibetan plateau
topic eastern Tibetan Plateau
Qingyi River
river terrace
geomorphological interpretation
terrace comparison
url https://www.frontiersin.org/articles/10.3389/feart.2025.1534898/full
work_keys_str_mv AT diweihua chemicalweatheringasatoolfordistinguishingriverterracesofvaryingagesacasestudyoftheqingyiriverontheeasterntibetanplateau
AT daweijiang chemicalweatheringasatoolfordistinguishingriverterracesofvaryingagesacasestudyoftheqingyiriverontheeasterntibetanplateau
AT shiminzhang chemicalweatheringasatoolfordistinguishingriverterracesofvaryingagesacasestudyoftheqingyiriverontheeasterntibetanplateau
AT ruiding chemicalweatheringasatoolfordistinguishingriverterracesofvaryingagesacasestudyoftheqingyiriverontheeasterntibetanplateau
AT yongqichen chemicalweatheringasatoolfordistinguishingriverterracesofvaryingagesacasestudyoftheqingyiriverontheeasterntibetanplateau