Fixed Points for Contractive Mappings of Integral Type Involving ω-Distance and Applications

In this paper, we use ω-distance to prove the existence, uniqueness, and iterative approximations of fixed points for a few contractive mappings of integral type in complete metric spaces. The proved results are used to investigate the solvability of certain nonlinear integral equations. Four exampl...

Full description

Saved in:
Bibliographic Details
Main Authors: Haiyan Gao, Na Liu, Liangshi Zhao
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2021/6648527
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561293626703872
author Haiyan Gao
Na Liu
Liangshi Zhao
author_facet Haiyan Gao
Na Liu
Liangshi Zhao
author_sort Haiyan Gao
collection DOAJ
description In this paper, we use ω-distance to prove the existence, uniqueness, and iterative approximations of fixed points for a few contractive mappings of integral type in complete metric spaces. The proved results are used to investigate the solvability of certain nonlinear integral equations. Four examples are given.
format Article
id doaj-art-82e473248be84971ab891bc69cfb9192
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-82e473248be84971ab891bc69cfb91922025-02-03T01:25:25ZengWileyJournal of Function Spaces2314-88962314-88882021-01-01202110.1155/2021/66485276648527Fixed Points for Contractive Mappings of Integral Type Involving ω-Distance and ApplicationsHaiyan Gao0Na Liu1Liangshi Zhao2School of Mathematics, Dongbei University of Finance and Economics, Dalian, Liaoning 116025, ChinaDepartment of Mathematics, Liaoning Normal University, Dalian, Liaoning 116029, ChinaCenter for Studies of Marine Economy and Sustainable Development, Liaoning Normal University, Dalian, Liaoning 116029, ChinaIn this paper, we use ω-distance to prove the existence, uniqueness, and iterative approximations of fixed points for a few contractive mappings of integral type in complete metric spaces. The proved results are used to investigate the solvability of certain nonlinear integral equations. Four examples are given.http://dx.doi.org/10.1155/2021/6648527
spellingShingle Haiyan Gao
Na Liu
Liangshi Zhao
Fixed Points for Contractive Mappings of Integral Type Involving ω-Distance and Applications
Journal of Function Spaces
title Fixed Points for Contractive Mappings of Integral Type Involving ω-Distance and Applications
title_full Fixed Points for Contractive Mappings of Integral Type Involving ω-Distance and Applications
title_fullStr Fixed Points for Contractive Mappings of Integral Type Involving ω-Distance and Applications
title_full_unstemmed Fixed Points for Contractive Mappings of Integral Type Involving ω-Distance and Applications
title_short Fixed Points for Contractive Mappings of Integral Type Involving ω-Distance and Applications
title_sort fixed points for contractive mappings of integral type involving ω distance and applications
url http://dx.doi.org/10.1155/2021/6648527
work_keys_str_mv AT haiyangao fixedpointsforcontractivemappingsofintegraltypeinvolvingōdistanceandapplications
AT naliu fixedpointsforcontractivemappingsofintegraltypeinvolvingōdistanceandapplications
AT liangshizhao fixedpointsforcontractivemappingsofintegraltypeinvolvingōdistanceandapplications