Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $
Let $ G $ be a group and $ S $ be a subset of $ G. $ We say that $ S $ normally generates $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this situation, every element $ g\in G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ S\subseteq G $ normall...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2024-11-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.20241609 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832590754676998144 |
---|---|
author | Fawaz Aseeri |
author_facet | Fawaz Aseeri |
author_sort | Fawaz Aseeri |
collection | DOAJ |
description | Let $ G $ be a group and $ S $ be a subset of $ G. $ We say that $ S $ normally generates $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this situation, every element $ g\in G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ S\subseteq G $ normally generates $ G, $ then the length $ \| g\|_{S}\in \mathbb{N} $ of $ g\in G $ with respect to $ S $ is the shortest possible length of a word in $ \text{Conj}_{G}(S^{\pm 1}): = \{h^{-1}sh | h\in G, s\in S \, \text{or} \, s{^{-1}}\in S \} $ expressing $ g. $ We write $ \|G\|_{S} = \text{sup}\{\|g\|_{S} \, |\, \, g\in G\} $ for any normally generating subset $ S $ of $ G. $ The conjugacy diameter of any group $ G $ is $ \Delta(G): = \sup\{ {\|G\|_{S}}\, \, | S\ \text{is a finite normally generating subset of } G \}. $ We say that $ G $ is uniformly bounded if $ \Delta(G) < \infty. $ This concept is a strengthening of boundedness. Motivated by previously known results approximating $ \Delta(G) $ for any algebraic group $ G, $ we find the exact values of the conjugacy diameters of the direct product of finitely many copies of $ SL_2(\mathbb{C}) $ and the direct product of finitely many copies of $ PSL_2(\mathbb{C}). $ We also prove that if $ G_1, \dots, G_n $ be quasisimple groups such that $ G_i $ is uniformly bounded for each $ i\in \{1, \dots, n\}, $ then $ G_1\times\dots \times G_n $ is uniformly bounded. This is also a generalization of some previously known results in the literature. |
format | Article |
id | doaj-art-82c7c1f779174f3990296e1c8ee4294a |
institution | Kabale University |
issn | 2473-6988 |
language | English |
publishDate | 2024-11-01 |
publisher | AIMS Press |
record_format | Article |
series | AIMS Mathematics |
spelling | doaj-art-82c7c1f779174f3990296e1c8ee4294a2025-01-23T07:53:24ZengAIMS PressAIMS Mathematics2473-69882024-11-01912337123373010.3934/math.20241609Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $Fawaz Aseeri0Mathematics Department, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi ArabiaLet $ G $ be a group and $ S $ be a subset of $ G. $ We say that $ S $ normally generates $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this situation, every element $ g\in G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ S\subseteq G $ normally generates $ G, $ then the length $ \| g\|_{S}\in \mathbb{N} $ of $ g\in G $ with respect to $ S $ is the shortest possible length of a word in $ \text{Conj}_{G}(S^{\pm 1}): = \{h^{-1}sh | h\in G, s\in S \, \text{or} \, s{^{-1}}\in S \} $ expressing $ g. $ We write $ \|G\|_{S} = \text{sup}\{\|g\|_{S} \, |\, \, g\in G\} $ for any normally generating subset $ S $ of $ G. $ The conjugacy diameter of any group $ G $ is $ \Delta(G): = \sup\{ {\|G\|_{S}}\, \, | S\ \text{is a finite normally generating subset of } G \}. $ We say that $ G $ is uniformly bounded if $ \Delta(G) < \infty. $ This concept is a strengthening of boundedness. Motivated by previously known results approximating $ \Delta(G) $ for any algebraic group $ G, $ we find the exact values of the conjugacy diameters of the direct product of finitely many copies of $ SL_2(\mathbb{C}) $ and the direct product of finitely many copies of $ PSL_2(\mathbb{C}). $ We also prove that if $ G_1, \dots, G_n $ be quasisimple groups such that $ G_i $ is uniformly bounded for each $ i\in \{1, \dots, n\}, $ then $ G_1\times\dots \times G_n $ is uniformly bounded. This is also a generalization of some previously known results in the literature.https://www.aimspress.com/article/doi/10.3934/math.20241609normally generating subsetsword normconjugacy diameter |
spellingShingle | Fawaz Aseeri Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $ AIMS Mathematics normally generating subsets word norm conjugacy diameter |
title | Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $ |
title_full | Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $ |
title_fullStr | Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $ |
title_full_unstemmed | Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $ |
title_short | Uniform boundedness of $ (SL_2(\mathbb{C}))^{n} $ and $ (PSL_2(\mathbb{C}))^{n} $ |
title_sort | uniform boundedness of sl 2 mathbb c n and psl 2 mathbb c n |
topic | normally generating subsets word norm conjugacy diameter |
url | https://www.aimspress.com/article/doi/10.3934/math.20241609 |
work_keys_str_mv | AT fawazaseeri uniformboundednessofsl2mathbbcnandpsl2mathbbcn |