Joint Spectra of Generators in Topological Algebras

Let 𝒜 be a complex topological algebra with unit 1 and 𝒰 a family of proper closed ideals in 𝒜. For an arbitrary S⊂𝒜 we define a globally defined joint spectrum σ𝒰(S)={(λs)s∈S∈ℂS  |   ∃ I  ∈𝒰(s−λs)∈I ∀s∈S}. We prove that for S generating 𝒜 the spectrum σ𝒰(S) can be identified with the set 𝔐𝒰 of co...

Full description

Saved in:
Bibliographic Details
Main Author: Antoni Wawrzyńczyk
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2007/96289
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559221874360320
author Antoni Wawrzyńczyk
author_facet Antoni Wawrzyńczyk
author_sort Antoni Wawrzyńczyk
collection DOAJ
description Let 𝒜 be a complex topological algebra with unit 1 and 𝒰 a family of proper closed ideals in 𝒜. For an arbitrary S⊂𝒜 we define a globally defined joint spectrum σ𝒰(S)={(λs)s∈S∈ℂS  |   ∃ I  ∈𝒰(s−λs)∈I ∀s∈S}. We prove that for S generating 𝒜 the spectrum σ𝒰(S) can be identified with the set 𝔐𝒰 of continuous multiplicative functionals f on 𝒜 such that ker f∈𝒰. The relation is given by the formula σ𝒰(S)={(f(s))s∈S  |    f∈𝔐𝒰}. If 𝒜 is a Q-algebra, the set σ𝒰(S) is rationally convex.
format Article
id doaj-art-8244b498c0dc4a2d8ddc5f929298fca9
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2007-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-8244b498c0dc4a2d8ddc5f929298fca92025-02-03T01:30:37ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252007-01-01200710.1155/2007/9628996289Joint Spectra of Generators in Topological AlgebrasAntoni Wawrzyńczyk0Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenue San Rafael Atlixco 186, Col. Vicentina, AP 55-534, México 09340, DF, MexicoLet 𝒜 be a complex topological algebra with unit 1 and 𝒰 a family of proper closed ideals in 𝒜. For an arbitrary S⊂𝒜 we define a globally defined joint spectrum σ𝒰(S)={(λs)s∈S∈ℂS  |   ∃ I  ∈𝒰(s−λs)∈I ∀s∈S}. We prove that for S generating 𝒜 the spectrum σ𝒰(S) can be identified with the set 𝔐𝒰 of continuous multiplicative functionals f on 𝒜 such that ker f∈𝒰. The relation is given by the formula σ𝒰(S)={(f(s))s∈S  |    f∈𝔐𝒰}. If 𝒜 is a Q-algebra, the set σ𝒰(S) is rationally convex.http://dx.doi.org/10.1155/2007/96289
spellingShingle Antoni Wawrzyńczyk
Joint Spectra of Generators in Topological Algebras
International Journal of Mathematics and Mathematical Sciences
title Joint Spectra of Generators in Topological Algebras
title_full Joint Spectra of Generators in Topological Algebras
title_fullStr Joint Spectra of Generators in Topological Algebras
title_full_unstemmed Joint Spectra of Generators in Topological Algebras
title_short Joint Spectra of Generators in Topological Algebras
title_sort joint spectra of generators in topological algebras
url http://dx.doi.org/10.1155/2007/96289
work_keys_str_mv AT antoniwawrzynczyk jointspectraofgeneratorsintopologicalalgebras