An Improved YOLOv8 and OC-SORT Framework for Fish Counting
Accurate fish population estimation is crucial for fisheries management, ecological monitoring, and aquaculture optimization. Traditional manual counting methods are labor-intensive and error-prone, while existing automated approaches struggle with occlusions, small-object detection, and identity sw...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Journal of Marine Science and Engineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-1312/13/6/1016 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Accurate fish population estimation is crucial for fisheries management, ecological monitoring, and aquaculture optimization. Traditional manual counting methods are labor-intensive and error-prone, while existing automated approaches struggle with occlusions, small-object detection, and identity switches. To address these challenges, this paper proposes an improved fish counting framework integrating YOLOv8-DT for detection and Byte-OCSORT for tracking. YOLOv8-DT incorporates the Deformable Large Kernel Attention Cross Stage Partial (DLKA CSP) module for adaptive receptive field adjustment and the Triple Detail Feature Infusion (TDFI) module for enhanced multi-scale feature fusion, improving small-object detection and occlusion robustness. Byte-OCSORT extends OC-SORT by integrating ByteTrack’s two-stage matching and a Class-Aware Cost Matrix (CCM), reducing ID switches and improving multi-species tracking stability. Experimental results on real-world underwater datasets demonstrate that YOLOv8-DT achieves a mAP<sub>50</sub> of 0.971 and mAP<sub>50:95</sub> of 0.742, while Byte-OCSORT reaches a MOTA of 72.3 and IDF1 of 69.4, significantly outperforming existing methods, confirming the effectiveness of the proposed framework for robust and accurate fish counting in complex aquatic environments. |
|---|---|
| ISSN: | 2077-1312 |