Performances of asphalt mastic incorporating with a home-made sustained-releasing salt storage additive

The absence of intrinsic deicing capabilities in conventional asphalt mastic poses a critical challenge in cold-climate regions, where the accumulation of snow and ice can result in hazardous traffic conditions. This research introduces the synthesis and integration of a proprietary salt-storage add...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Du, Qing-liang Wang, Yong-xu Li, Xiao-ning Wang, Xiao-cun Liu, Ya-fei Wang, Yan-min Wang, Jin Li
Format: Article
Language:English
Published: Elsevier 2025-07-01
Series:Case Studies in Construction Materials
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S221450952401266X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The absence of intrinsic deicing capabilities in conventional asphalt mastic poses a critical challenge in cold-climate regions, where the accumulation of snow and ice can result in hazardous traffic conditions. This research introduces the synthesis and integration of a proprietary salt-storage additive, designated DN-PF, into asphalt mastic for the development of self-deicing pavements. The DN-PF additive comprises a sodium chloride (NaCl) core, supported by diatomite and encapsulated in a phenolic resin matrix, engineered to confer self-deicing functionality to asphalt mastic. The DN-PF asphalt mastic was prepared by substituting all filler with equivalent-volume of DN-PF. A comprehensive assessment of the asphalt mastic properties were investigated via penetration, ductility, softening point, the dynamic shear rheometer (DSR) and Bending Beam Rheometer (BBR) tests. The sustained-releasing efficacy of the DN-PF asphalt mastic was also examined by conductivity test. The results indicated that the inclusion of DN-PF improves the high temperature stability and shear resistance of the DN-PF asphalt mastic. However, it also decreases the plasticity and low-temperature anti-cracking property of the mastic. The dissolution amount of snowmelt salt remained stable with uniform dissolution speed, highlighting enhanced sustained-release properties of additives. However, in our study the DSR experimental design was constrained to temperature scanning, neglecting frequency and time domain scanning, which precluded a comprehensive assessment of mid-temperature fatigue performance. As a result, the fatigue behavior at intermediate temperatures necessitates further research.
ISSN:2214-5095