Some Properties of S-Semiannihilator Small Submodules and S-Small Submodules with respect to a Submodule
Let R be a commutative ring with nonzero identity, S⊆R be a multiplicatively closed subset of R, and M be a unital R-module. In this article, we introduce the concepts of S-semiannihilator small submodules and S-T-small submodules as generalizations of S-small submodules. We investigate some basic p...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2024-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2024/5547197 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832546676337803264 |
---|---|
author | F. Farzalipour S. Rajaee P. Ghiasvand |
author_facet | F. Farzalipour S. Rajaee P. Ghiasvand |
author_sort | F. Farzalipour |
collection | DOAJ |
description | Let R be a commutative ring with nonzero identity, S⊆R be a multiplicatively closed subset of R, and M be a unital R-module. In this article, we introduce the concepts of S-semiannihilator small submodules and S-T-small submodules as generalizations of S-small submodules. We investigate some basic properties of them and give some characterizations of such submodules, especially for (finitely generated faithful) multiplication modules. |
format | Article |
id | doaj-art-81df9d6af6b4485da3389da57123cf7f |
institution | Kabale University |
issn | 2314-4785 |
language | English |
publishDate | 2024-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Mathematics |
spelling | doaj-art-81df9d6af6b4485da3389da57123cf7f2025-02-03T06:47:39ZengWileyJournal of Mathematics2314-47852024-01-01202410.1155/2024/5547197Some Properties of S-Semiannihilator Small Submodules and S-Small Submodules with respect to a SubmoduleF. Farzalipour0S. Rajaee1P. Ghiasvand2Department of MathematicsDepartment of MathematicsDepartment of MathematicsLet R be a commutative ring with nonzero identity, S⊆R be a multiplicatively closed subset of R, and M be a unital R-module. In this article, we introduce the concepts of S-semiannihilator small submodules and S-T-small submodules as generalizations of S-small submodules. We investigate some basic properties of them and give some characterizations of such submodules, especially for (finitely generated faithful) multiplication modules.http://dx.doi.org/10.1155/2024/5547197 |
spellingShingle | F. Farzalipour S. Rajaee P. Ghiasvand Some Properties of S-Semiannihilator Small Submodules and S-Small Submodules with respect to a Submodule Journal of Mathematics |
title | Some Properties of S-Semiannihilator Small Submodules and S-Small Submodules with respect to a Submodule |
title_full | Some Properties of S-Semiannihilator Small Submodules and S-Small Submodules with respect to a Submodule |
title_fullStr | Some Properties of S-Semiannihilator Small Submodules and S-Small Submodules with respect to a Submodule |
title_full_unstemmed | Some Properties of S-Semiannihilator Small Submodules and S-Small Submodules with respect to a Submodule |
title_short | Some Properties of S-Semiannihilator Small Submodules and S-Small Submodules with respect to a Submodule |
title_sort | some properties of s semiannihilator small submodules and s small submodules with respect to a submodule |
url | http://dx.doi.org/10.1155/2024/5547197 |
work_keys_str_mv | AT ffarzalipour somepropertiesofssemiannihilatorsmallsubmodulesandssmallsubmoduleswithrespecttoasubmodule AT srajaee somepropertiesofssemiannihilatorsmallsubmodulesandssmallsubmoduleswithrespecttoasubmodule AT pghiasvand somepropertiesofssemiannihilatorsmallsubmodulesandssmallsubmoduleswithrespecttoasubmodule |